基于tensorflow写一个DQN算法代码
时间: 2023-12-03 20:45:47 浏览: 104
4.1 DQN 算法更新 using Tensorflow (强化学习 Reinforcement Learning 教学)
好的,下面是一个基于tensorflow的DQN算法代码。
首先,需要导入相关的库:
```python
import gym
import tensorflow as tf
import numpy as np
import random
from collections import deque
```
然后定义一个DQN类,包含训练和测试两个方法:
```python
class DQN:
def __init__(self, env):
self.env = env
# DQN参数
self.memory = deque(maxlen=2000)
self.gamma = 0.95
self.epsilon = 1.0
self.epsilon_min = 0.01
self.epsilon_decay = 0.995
self.learning_rate = 0.001
self.tau = 0.125
# 神经网络模型
self.model = self.create_model()
self.target_model = self.create_model()
self.target_model.set_weights(self.model.get_weights())
# 创建神经网络模型
def create_model(self):
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(24, input_dim=self.env.observation_space.shape[0], activation='relu'),
tf.keras.layers.Dense(24, activation='relu'),
tf.keras.layers.Dense(self.env.action_space.n, activation='linear')
])
model.compile(loss='mse', optimizer=tf.keras.optimizers.Adam(lr=self.learning_rate))
return model
# 训练神经网络模型
def train(self, episodes=100):
for episode in range(episodes):
state = self.env.reset()
state = np.reshape(state, [1, self.env.observation_space.shape[0]])
done = False
total_reward = 0
while not done:
# 选择动作
if np.random.rand() <= self.epsilon:
action = env.action_space.sample()
else:
action = np.argmax(self.model.predict(state)[0])
# 执行动作
next_state, reward, done, _ = self.env.step(action)
next_state = np.reshape(next_state, [1, self.env.observation_space.shape[0]])
total_reward += reward
# 存储经验
self.memory.append((state, action, reward, next_state, done))
# 更新当前状态
state = next_state
# 训练模型
self.replay()
# 输出本轮结果
print("Episode {}/{}, Total Reward: {}, Epsilon: {:.2f}"
.format(episode, episodes, total_reward, self.epsilon))
# 更新目标模型
self.update_target_model()
# 更新epsilon
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
# 测试神经网络模型
def test(self, episodes=10):
for episode in range(episodes):
state = self.env.reset()
state = np.reshape(state, [1, self.env.observation_space.shape[0]])
done = False
total_reward = 0
while not done:
# 选择动作
action = np.argmax(self.model.predict(state)[0])
# 执行动作
next_state, reward, done, _ = self.env.step(action)
next_state = np.reshape(next_state, [1, self.env.observation_space.shape[0]])
total_reward += reward
# 更新当前状态
state = next_state
# 输出本轮结果
print("Episode {}/{}, Total Reward: {}"
.format(episode, episodes, total_reward))
# 训练模型
def replay(self, batch_size=32):
minibatch = random.sample(self.memory, batch_size)
for state, action, reward, next_state, done in minibatch:
if done:
target = reward
else:
target = reward + self.gamma * np.amax(self.target_model.predict(next_state)[0])
target_f = self.model.predict(state)
target_f[0][action] = target
self.model.fit(state, target_f, epochs=1, verbose=0)
# 更新目标模型
def update_target_model(self):
weights = self.model.get_weights()
target_weights = self.target_model.get_weights()
for i in range(len(target_weights)):
target_weights[i] = self.tau * weights[i] + (1 - self.tau) * target_weights[i]
self.target_model.set_weights(target_weights)
```
最后,我们可以使用如下代码来训练模型:
```python
env = gym.make('CartPole-v1')
dqn = DQN(env)
dqn.train()
```
或者使用如下代码来测试模型:
```python
env = gym.make('CartPole-v1')
dqn = DQN(env)
dqn.model.load_weights('dqn.h5')
dqn.test()
```
注意,这里仅仅是一个简单的DQN代码示例,并没有进行特定问题的调参,具体参数需要根据不同的场景进行调整。
阅读全文