import itertools import warnings import pandas as pd import numpy as np import statsmodels.api as sm from datetime import datetime from statsmodels.tsa.arima.model import ARIMA from statsmodels.graphics.tsaplots import plot_acf, plot_pacf from statsmodels.stats.diagnostic import acorr_ljungbox from sklearn.model_selection import train_test_split data = pd.read_csv('data.csv', parse_dates=['x'], index_col='x') train_data1, test_data = train_test_split(data1, test_size=0.3, shuffle=False) data['lag1'] = data['y'].shift(1) data['lag2'] = data['y'].shift(2) data['lag3'] = data['y'].shift(3) data['lag4'] = data['y'].shift(4) data['lag5'] = data['y'].shift(5) data['lag6'] = data['y'].shift(6) data['lag7'] = data['y'].shift(7) data.dropna(inplace=True) train_data, test_data1 = train_test_split(data, test_size=0.3, shuffle=False) g=int(input("输入P的峰值: ")) h=int(input("输入D的峰值: ")) i=int(input("输入Q的峰值: ")) p = range(0, g) d = range(0, h) q = range(0, i) pdq = list(itertools.product(p, d, q)) best_pdq = None best_aic = np.inf for param in pdq: model = sm.tsa.ARIMA(data['y'], exog=data[['lag1', 'lag2', 'lag3', 'lag4', 'lag5', 'lag6', 'lag7']], order=param) results = model.fit() aic = results.aic if aic < best_aic: best_pdq = param best_aic = aic a=best_pdq[0] b=best_pdq[1] c=best_pdq[2] model = ARIMA(data['y'], exog=data[['lag1', 'lag2', 'lag3', 'lag4', 'lag5', 'lag6', 'lag7']], order=(a,b,c)) results = model.fit() max_lag = model.k_ar model_fit = model.fit() resid = model_fit.resid lb_test = acorr_ljungbox(resid) p_value=round(lb_test['lb_pvalue'][max_lag],4) if p_value>0.05: forecast = results.forecast(steps=1, exog=data[['lag1', 'lag2', 'lag3', 'lag4', 'lag5', 'lag6', 'lag7']].iloc[-1:]) # 输出预测值 forecast.index[0].strftime('%Y-%m') print("下个月的预测结果是",round(forecast[0])) else: print('输入的数据不适合使用arima模型进行预测分析,请尝试其他模型'),如何添加检测预测准确率的python代码

时间: 2023-08-17 07:05:57 浏览: 192
要添加检测预测准确率的代码,可以使用均方根误差(RMSE)或平均绝对误差(MAE)等指标。以RMSE为例,可以按以下步骤进行计算和输出: 1. 在导入所需的库后,将测试数据集中的实际值和预测值提取出来: ``` test_actual = test_data['y'] test_pred = results.predict(start=test_data.index[0], end=test_data.index[-1], exog=test_data[['lag1', 'lag2', 'lag3', 'lag4', 'lag5', 'lag6', 'lag7']]) ``` 2. 计算RMSE并输出结果: ``` rmse = np.sqrt(((test_pred - test_actual) ** 2).mean()) print('测试集的RMSE为', rmse) ``` 完整的代码如下: ``` import itertools import warnings import pandas as pd import numpy as np import statsmodels.api as sm from datetime import datetime from statsmodels.tsa.arima.model import ARIMA from statsmodels.graphics.tsaplots import plot_acf, plot_pacf from statsmodels.stats.diagnostic import acorr_ljungbox from sklearn.model_selection import train_test_split # 导入数据 data = pd.read_csv('data.csv', parse_dates=['x'], index_col='x') # 划分训练集和测试集 train_data1, test_data = train_test_split(data1, test_size=0.3, shuffle=False) # 添加滞后特征 data['lag1'] = data['y'].shift(1) data['lag2'] = data['y'].shift(2) data['lag3'] = data['y'].shift(3) data['lag4'] = data['y'].shift(4) data['lag5'] = data['y'].shift(5) data['lag6'] = data['y'].shift(6) data['lag7'] = data['y'].shift(7) data.dropna(inplace=True) # 再次划分训练集和测试集 train_data, test_data1 = train_test_split(data, test_size=0.3, shuffle=False) # 寻找最优的ARIMA模型 g=int(input("输入P的峰值: ")) h=int(input("输入D的峰值: ")) i=int(input("输入Q的峰值: ")) p = range(0, g) d = range(0, h) q = range(0, i) pdq = list(itertools.product(p, d, q)) best_pdq = None best_aic = np.inf for param in pdq: model = sm.tsa.ARIMA(data['y'], exog=data[['lag1', 'lag2', 'lag3', 'lag4', 'lag5', 'lag6', 'lag7']], order=param) results = model.fit() aic = results.aic if aic < best_aic: best_pdq = param best_aic = aic a=best_pdq[0] b=best_pdq[1] c=best_pdq[2] model = ARIMA(data['y'], exog=data[['lag1', 'lag2', 'lag3', 'lag4', 'lag5', 'lag6', 'lag7']], order=(a,b,c)) results = model.fit() # 进行预测并计算测试集的RMSE max_lag = model.k_ar model_fit = model.fit() resid = model_fit.resid lb_test = acorr_ljungbox(resid) p_value=round(lb_test['lb_pvalue'][max_lag],4) if p_value>0.05: # 预测结果 forecast = results.forecast(steps=1, exog=data[['lag1', 'lag2', 'lag3', 'lag4', 'lag5', 'lag6', 'lag7']].iloc[-1:]) print("下个月的预测结果是",round(forecast[0])) # 计算RMSE并输出结果 test_actual = test_data['y'] test_pred = results.predict(start=test_data.index[0], end=test_data.index[-1], exog=test_data[['lag1', 'lag2', 'lag3', 'lag4', 'lag5', 'lag6', 'lag7']]) rmse = np.sqrt(((test_pred - test_actual) ** 2).mean()) print('测试集的RMSE为', rmse) else: print('输入的数据不适合使用ARIMA模型进行预测分析,请尝试其他模型') ```
阅读全文

相关推荐

import numpy as np import pandas as pd from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt from termcolor import colored as cl import itertools from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from xgboost import XGBClassifier from sklearn.neural_network import MLPClassifier from sklearn.ensemble import VotingClassifier # 定义模型评估函数 def evaluate_model(y_true, y_pred): accuracy = accuracy_score(y_true, y_pred) precision = precision_score(y_true, y_pred, pos_label='Good') recall = recall_score(y_true, y_pred, pos_label='Good') f1 = f1_score(y_true, y_pred, pos_label='Good') print("准确率:", accuracy) print("精确率:", precision) print("召回率:", recall) print("F1 分数:", f1) # 读取数据集 data = pd.read_csv('F:\数据\大学\专业课\模式识别\大作业\数据集1\data clean Terklasifikasi baru 22 juli 2015 all.csv', skiprows=16, header=None) # 检查数据集 print(data.head()) # 划分特征向量和标签 X = data.iloc[:, :-1] y = data.iloc[:, -1] # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 6. XGBoost xgb = XGBClassifier(max_depth=4) y_test = np.array(y_test, dtype=int) xgb.fit(X_train, y_train) xgb_pred = xgb.predict(X_test) print("\nXGBoost评估结果:") evaluate_model(y_test, xgb_pred)

# -*- coding: utf-8 -*- """ Transform the data type from ascii to ubyte format (8 bits unsigned binary) and save to new files, which would reduce the data size to 1/3, and would save the data transforming time when read by the python @author: Marmot """ import numpy as np import time from itertools import islice import pandas as pd # data_folder = '../../data/' set_list = ['train','testA','testB'] size_list = [10000,2000,2000] time1= time.time() for set_name,set_size in zip(set_list,size_list): output_file = data_folder + set_name + '_ubyte.txt' f = open(output_file, "w") f.close() Img_ind = 0 input_file = data_folder + set_name +'.txt' with open(input_file) as f: for content in f: Img_ind = Img_ind +1 print('transforming ' + set_name + ': ' + str(Img_ind).zfill(5)) line = content.split(',') title = line[0] + ' '+line[1] data_write = np.asarray(line[2].strip().split(' ')).astype(np.ubyte) data_write = (data_write + 1).astype(np.ubyte) if data_write.max()>255: print('too large') if data_write.min()<0: print('too small') f = open(output_file, "a") f.write(data_write.tobytes()) f.close() time2 = time.time() print('total elapse time:'+ str(time2- time1)) #%% generate train label list value_list =[] set_name = 'train' input_file = data_folder + set_name +'.txt' with open(input_file) as f: for content in f: line = content.split(',') value_list.append(float(line[1])) value_list = pd.DataFrame(value_list, columns=['value']) value_list.to_csv(data_folder + 'train_label.csv',index = False,header = False)

大家在看

recommend-type

pjsip开发指南

pjsip是一个开源的sip协议栈,这个文档主要对sip开发的框架进行说明
recommend-type

KEMET_聚合物钽电容推介资料

KEMET_聚合物钽电容推介资料-内部资料,英文版!
recommend-type

变频器设计资料中关于驱动电路的设计

关于IGBT驱动电路设计!主要介绍了三菱智能模块的应用.
recommend-type

网络信息系统应急预案-网上银行业务持续性计划与应急预案

包含4份应急预案 网络信息系统应急预案.doc 信息系统应急预案.DOCX 信息系统(系统瘫痪)应急预案.doc 网上银行业务持续性计划与应急预案.doc
recommend-type

毕业设计&课设-MATLAB的光场工具箱.zip

matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随

最新推荐

recommend-type

(179722824)三相异步电机矢量控制仿真模型

三相异步电机矢量控制仿真模型。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

一次并发导致错误分析与总结

一次并发导致错误分析
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

传感器集成全攻略:ICM-42688-P运动设备应用详解

![传感器集成全攻略:ICM-42688-P运动设备应用详解](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-ba33fcfbde1d1207d7b8fe45b6ea58d0.png) # 摘要 ICM-42688-P传感器作为一种先进的惯性测量单元,广泛应用于多种运动设备中。本文首先介绍了ICM-42688-P传感器的基本概述和技术规格,然后深入探讨了其编程基础,包括软件接口、数据读取处理及校准测试。接着,本文详细分析了该传感器在嵌入式系统、运动控制和人机交互设备中的实践应用,并且探讨了高级功能开发,
recommend-type

matlab 中实现 astar

在MATLAB中,A*算法是一种用于求解最短路径问题的启发式搜索算法。它适用于带权重的图或网格,特别是当有大量潜在解决方案时,比如迷宫寻路问题。以下是使用MATLAB基本步骤来实现A*算法: 1. **数据结构准备**: - 创建一个二维数组表示地图,其中0代表可以通行的节点,其他值代表障碍物或边界。 - 定义一个队列(通常使用`prioritiesqueue`)来存储待探索的节点及其信息。 2. **初始化**: - 设定起始节点(start),目标节点(goal),以及每个节点的初始g值(从起点到该点的实际代价)和f值(g值加上估计的h值,即启发函数)。 3.