next_state, reward, done, _ = env.step(action)这段代码问题在哪里
时间: 2023-05-27 15:06:11 浏览: 106
这段代码没有问题,它是用来执行一个动作并返回与该动作相关的信息,其中:
- `action`是代表要执行的动作的参数;
- `next_state`是执行该动作后的下一个状态;
- `reward`是执行该动作获得的奖励值;
- `done`是一个布尔值,表示是否达到了终止状态;
- `_`代表一个占位符,用于存储其他一些信息,但在这个代码中没有使用到。
相关问题
while not ep_done: num_steps += 1 if train_params.RENDER: self.env_wrapper.render() action = self.sess.run(self.actor_net.output, {self.state_ph:np.expand_dims(state, 0)})[0] # Add batch dimension to single state input, and remove batch dimension from single action output action += (gaussian_noise() * train_params.NOISE_DECAY**num_eps) next_state, reward, terminal = self.env_wrapper.step(action) episode_reward += reward next_state = self.env_wrapper.normalise_state(next_state) reward = self.env_wrapper.normalise_reward(reward) self.exp_buffer.append((state, action, reward)) if len(self.exp_buffer) >= train_params.N_STEP_RETURNS: state_0, action_0, reward_0 = self.exp_buffer.popleft() discounted_reward = reward_0 gamma = train_params.DISCOUNT_RATE for (_, _, r_i) in self.exp_buffer: discounted_reward += r_i * gamma gamma *= train_params.DISCOUNT_RATE run_agent_event.wait() PER_memory.add(state_0, action_0, discounted_reward, next_state, terminal, gamma) state = next_state
这段代码是主循环中的一部分,其中包含了执行动作、观察环境、更新经验缓存等操作。具体来说,算法执行以下步骤:
1. 累计步数;
2. 如果需要渲染环境,则渲染环境;
3. 使用Actor网络计算当前状态的动作;
4. 对动作添加高斯噪声;
5. 执行动作并观察新状态和奖励;
6. 累计回报;
7. 对新状态进行归一化处理;
8. 对奖励进行归一化处理;
9. 将经验添加到经验缓存中;
10. 如果经验缓存已满,则计算N步回报,并将经验添加到优先经验回放缓存中;
11. 更新状态。
在这个过程中,Actor网络用于计算当前状态下的动作,而高斯噪声则用于增加探索性,以便算法能够更好地探索环境。在执行动作之后,算法会观察新状态和奖励,并将它们添加到经验缓存中。如果经验缓存已满,算法会计算N步回报,并将经验添加到优先经验回放缓存中。最后,算法会更新状态并继续执行主循环。
def train(num_ue, F): replay_buffer = ReplayBuffer(capacity=1000) env = env = Enviroment(W=5, num_ue=num_ue, F=F, bn=np.random.uniform(300, 500, size=num_ue), dn=np.random.uniform(900, 1100, size=num_ue), dist=np.random.uniform(size=num_ue) * 200, f=1, iw=0, ie=0.3, it=0.7,pn=500, pi=100,tn = np.random.uniform(0.8, 1.2, size=num_ue), wn = np.random.randint(0, 2, size=num_ue)) net = nn.Sequential() net.add(nn.Dense(512, activation='relu'), nn.Dense(num_ue * 3 + num_ue * (F + 1))) net.initialize(init.Normal(sigma=0.001)) trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.01}) batch_size = 64 loss_fn = gluon.loss.L2Loss() state, _, _, = env.get_Init_state() best_state = state[0] print(best_state) for idx in range(100000):#训练 action_ra, action_rf = net_action(net(nd.array(state.reshape((1, -1)))).asnumpy()) next_state, reward, done = env.step(action_ra, action_rf) if done: next_state, ra, rf, = env.get_Init_state() _, reward, _ = env.step(ra, rf) best_state = state[0] replay_buffer.push(state, (ra, rf), reward, next_state, False) state, _, _, = env.get_Init_state() else: best_state = state[0] replay_buffer.push(state, (action_ra, action_rf), reward, next_state, done) state = next_state if len(replay_buffer) > 100: with autograd.record(): loss = compute_td_loss2(batch_size=batch_size, net=net, loss_fn=loss_fn, replay_buffer=replay_buffer) loss.backward() trainer.step(batch_size, ignore_stale_grad=True) print(best_state)
这段代码是一个训练函数,用于训练一个神经网络模型。它使用了一个回放缓冲区(replay_buffer)来保存训练数据。在每个训练步骤中,它使用模型对当前状态进行预测,并根据预测结果选择一个动作。然后,它通过执行该动作来获得下一个状态、奖励以及是否完成的标志。如果完成,则重新初始化环境并继续训练。否则,将当前状态、动作、奖励、下一个状态和完成标志存储到回放缓冲区中。
当回放缓冲区中的数据量超过一定阈值时,它会使用批量梯度下降方法计算损失,并更新模型的参数。
最后,它打印出最佳状态(best_state),即训练过程中观察到的最优状态。
请注意,这段代码中使用了一些自定义的函数和类,例如ReplayBuffer和Enviroment。你可能需要查看这些函数和类的实现代码来理解完整的训练过程。
阅读全文