以测试集AUC为评价指标,使用深度学习进行二分类任务预测的代码
时间: 2024-02-06 07:02:09 浏览: 57
以下是一个使用PyTorch进行二分类任务预测的代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
from sklearn.metrics import roc_auc_score
# 定义神经网络模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(10, 64)
self.fc2 = nn.Linear(64, 32)
self.fc3 = nn.Linear(32, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.fc1(x)
x = nn.functional.relu(x)
x = self.fc2(x)
x = nn.functional.relu(x)
x = self.fc3(x)
x = self.sigmoid(x)
return x
# 加载数据集
data = torch.load('data.pt')
x_train, y_train, x_test, y_test = data
train_dataset = TensorDataset(x_train, y_train)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
test_dataset = TensorDataset(x_test, y_test)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
# 定义损失函数和优化器
criterion = nn.BCELoss()
optimizer = optim.Adam(net.parameters(), lr=0.01)
# 训练模型
net = Net()
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(train_loader):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
# 在测试集上计算AUC
y_pred = []
y_true = []
with torch.no_grad():
for data in test_loader:
inputs, labels = data
outputs = net(inputs)
y_pred += outputs.tolist()
y_true += labels.tolist()
auc = roc_auc_score(y_true, y_pred)
print('Epoch %d, loss: %.3f, test AUC: %.3f' % (epoch + 1, running_loss / len(train_loader), auc))
```
首先定义了一个包含三个全连接层和一个Sigmoid激活函数的神经网络模型。然后加载数据集并分别定义训练集和测试集的DataLoader。接着定义了交叉熵损失函数和Adam优化器,并使用训练集来训练模型。在每个epoch结束时,使用测试集上的预测结果计算AUC,并输出训练信息。
阅读全文