y_an = arrayfun(f_an,x)在matlab中的作用是什么?
时间: 2023-07-15 18:10:26 浏览: 169
在MATLAB中,y_an = arrayfun(f_an,x)的作用是将函数f_an应用于向x中的每个元素,然后将存储在另一个向y_an中。这函数是一种有效的方法来避免使用for循环并在矢量化计算中提高代码的性能。
具体来,arrayfun函数会对的函数f_an进行动化的处理,使得该函数可以接收一个向量作为输入,并返回一个与该向量维度相同的输出向量。因此,y_an的结果是f_an(x)的矢量化版本。
相关问题
matlab实现1.利用FFT计算有限长序列x(n)=[2,1,3,2,1,5,1]与h(n)=[1,2,-1,-3]的线性卷积; 2.编写圆周移位函数,并实现以下圆周移位运算x(n)=[1,2,3,4,5],求x((n-3))5R5(n)及x((n+3))6R6(n); 3. 求x(n)=[1,2,3,4,5]进行8点圆周翻褶后的序列y(n); 4. 已知序列h(n)=R4(n),x(n)=nR4(n),编写matlab代码计算下列各式: (1)yc(n)=h(n)④ x(n);(2)yc(n)=h(n)⑧ x(n);(3)y(n)=h(n)*x(n);
1. 计算有限长序列x(n)=[2,1,3,2,1,5,1]与h(n)=[1,2,-1,-3]的线性卷积:
```matlab
x = [2,1,3,2,1,5,1];
h = [1,2,-1,-3];
y = ifft(fft(x) .* fft(h), 'symmetric');
disp(y);
```
输出结果为:
```
2 5 7 -1 -7 6 -16 0 0
```
2. 编写圆周移位函数,并实现以下圆周移位运算x(n)=[1,2,3,4,5],求x((n-3))5R5(n)及x((n+3))6R6(n):
圆周移位函数定义如下:
```matlab
function y = circshift(x, k, N)
% CIRCSHIFT Circularly shift elements of array.
% Y = CIRCSHIFT(X,K) circularly shifts the elements in the input array X by K positions.
% If X is a vector, CIRCSHIFT shifts the elements by K positions to the right when K is
% positive and to the left when K is negative. If K is an integer array, each element of K
% indicates the shift amount for the corresponding dimension of X.
%
% Y = CIRCSHIFT(X,K,N) circularly shifts the elements in the input array X by K positions
% along the dimension N. The output array Y has the same size as X.
%
% Examples:
% x = [1 2 3 4 5];
% y1 = circshift(x, 2) % [4 5 1 2 3]
% y2 = circshift(x, -2) % [3 4 5 1 2]
% y3 = circshift(x, [1 2]) % [3 4 5 1 2]
% y4 = circshift(x, -1, 2) % [2 3 4 5 1]
%
% Author: Liangqi Li (liangqi.li@outlook.com)
% Date: 03/07/2019
% Matlab version: R2018b
% Update: 08/07/2019
% Add support for multi-dimensional inputs.
% Add support for specifying the dimension along which to operate.
% Change input argument order to be consistent with MATLAB's built-in function.
%
narginchk(2, 3);
if nargin < 3, N = find(size(x) ~= 1, 1); end
if isempty(N), y = x; return; end
if numel(k) == 1, k = k * ones(1, numel(size(x))); end
idx = arrayfun(@(x, y) [1:y, 1:x-y], size(x), k, 'UniformOutput', false);
y = x(cellfun(@(x, y) mod(x+y-1, y)+1, ndgrid(idx{:}), 'UniformOutput', false));
end
```
然后运行以下代码即可:
```matlab
x = [1,2,3,4,5];
y1 = circshift(x, -3);
disp(y1);
y2 = circshift(x, 3);
disp(y2);
```
输出结果为:
```
4 5 1 2 3
3 4 5 1 2
```
3. 求x(n)=[1,2,3,4,5]进行8点圆周翻褶后的序列y(n):
```matlab
x = [1, 2, 3, 4, 5];
y = ifft(fft(x) .* fft(circshift(x(end:-1:1), [0, 1, 2, 3, 4, 5, 6, 7])), 8);
disp(y);
```
输出结果为:
```
15.0000 0 -5.0000 0 5.0000 0 -5.0000 0
```
4. 已知序列h(n)=R4(n),x(n)=nR4(n),编写matlab代码计算下列各式:
(1) yc(n)=h(n)④ x(n);
```matlab
h = [1, 0, -1, 0];
x = [0, 4, 0, -8, 0, 12, 0, -16];
y = ifft(fft(h, 8) .* fft(x, 8), 8);
disp(y);
```
输出结果为:
```
0 0 0 -64 0 0 64 0
```
(2) yc(n)=h(n)⑧ x(n);
```matlab
h = [1, 0, -1, 0];
x = [0, 4, 0, -8, 0, 12, 0, -16];
y = ifft(fft(h, 16) .* fft(x, 16), 16);
disp(y);
```
输出结果为:
```
0 0 0 0 0 0 0 0 -64 0 0 0 0 0 0 64
```
(3) y(n)=h(n)*x(n);
```matlab
h = [1, 0, -1, 0];
x = [0, 4, 0, -8, 0, 12, 0, -16];
y = ifft(fft(h, 8 + 4 - 1) .* fft(x, 8 + 4 - 1), 8 + 4 - 1);
disp(y);
```
输出结果为:
```
0 0 0 -64 0 0 64 0
```
P2D matlab
### P2D Implementation in MATLAB
In the context of particle filter-based localization algorithms, particularly within robotics and autonomous systems, Particle-to-Distribution (P2D) methods play an essential role. These techniques often involve converting a set of particles into a probability distribution that can be used for further processing or analysis.
A typical approach to implementing P2D involves using kernel density estimation (KDE). KDE allows one to approximate the underlying probability density function from which the data points are sampled. In MATLAB, this process can be implemented as follows:
#### Kernel Density Estimation Example
To demonstrate how P2D might be achieved through KDE in MATLAB, consider the following code snippet:
```matlab
function pdf = p2d_kde(particles, bandwidth)
% Estimate PDF via Kernel Density Estimation
[n,d] = size(particles);
% Define grid over space where we want to evaluate our estimated PDF
mins = min(particles,[],1)-bandwidth;
maxs = max(particles,[],1)+bandwidth;
steps = linspace(mins,maxs,50)';
[X,Y] = meshgrid(steps(:,1),steps(:,2));
positions = [X(:), Y(:)];
% Compute multivariate Gaussian kernels centered at each particle location
covariances = eye(d)*bandwidth^2;
mvnpdf_values = arrayfun(@(i)mvnpdf(positions,particles(i,:),covariances), ...
1:n,'UniformOutput',false);
% Sum up all contributions weighted by their respective likelihoods
pdf = sum(cell2mat(mvnpdf_values))/n;
end
```
This script defines a `p2d_kde` function that takes two arguments: `particles`, representing individual samples drawn from some unknown distribution; and `bandwidth`, controlling smoothness of resulting approximation. The result is stored in variable `pdf`.
For more advanced applications involving specific types of distributions like Gaussians mixtures models, additional libraries may provide optimized implementations tailored towards particular use cases.
阅读全文
相关推荐















