plt.scatter(X,y,marker="x",color="r") plt.xlabel("Change in water level") plt.ylim(0,40) plt.ylabel("Water flowing out of the dam")
时间: 2024-04-15 14:17:26 浏览: 126
这段代码使用了Python中的matplotlib库,用于绘制散点图。plt.scatter()函数用于绘制散点图,其中X和y分别是数据点的横坐标和纵坐标,marker参数指定了数据点的形状,color参数指定了数据点的颜色。plt.xlabel()和plt.ylabel()函数用于设置坐标轴的标签,plt.ylim()函数用于设置纵坐标轴的范围。这段代码的目的是可视化水库水位变化与水流出量之间的关系。
相关问题
def drawPlot(title,x_train,x_test,y_train,y_test): N,M=500,500 x1_min,x2_min=x_train.min() x1_max,x2_max=x_train.max() t1=np.linspace(x1_min,x1_max,N) t2=np.linspace(x2_min,x2_max,M) x1,x2=np.meshgrid(t1,t2) x_show=np.stack((x1.flat,x2.flat),axis=1) y_hat=model.predict(x_show) y_hat=y_hat.reshape(x1.shape) cm_light=mpl.colors.ListedColormap(['#F2F2C2','#E00E00','#FFFFFF']) cm_dark=mpl.colors.ListedColormap(['#FFFFFF','#000000','#CCCCCC']) plt.figure(figsize=(3,2.5),facecolor='w') plt.contour(x1,x2,y_hat,colors='k',levels=[0,1],antialiased=True,linewidths=1) plt.pcolormesh(x1,x2,y_hat,cmap=cm_light) plt.scatter(x_train[0],x_train[1],c=y_train,s=20,edgecolors='k',cmap=cm_dark,label='训练集') plt.scatter(x_test[0],x_test[1],c=y_test,s=80,marker='*',edgecolors='k',cmap=cm_dark,label='测试集') plt.xlabel('花萼长度',fontsize=9) plt.ylabel('花萼宽度',fontsize=9) plt.xlim(x1_min,x1_max) plt.ylim(x2_min,x2_max) plt.grid(b=True,ls=':',color='#606060') plt.suptitle(title,fontsize=8) plt.tight_layout(1,rect=(0,0,1,0.94)) plt.show()报错TypeError: tight_layout() takes 0 positional arguments but 1 positional argument (and 1 keyword-only argument) were given
这个错误是因为 tight_layout() 这个函数需要传入一个子图布局的矩形参数,但是在这里没有给定。你可以将代码中的 plt.tight_layout(1,rect=(0,0,1,0.94)) 修改为 plt.tight_layout(rect=(0,0,1,0.94)),这样就可以解决这个问题了。
import matplotlib.pyplot as plt import numpy as np from matplotlib.colors import ListedColormap from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier iris = datasets.load_iris() X = iris.data[:, [2, 3]] y = iris.target print('Class labels:', np.unique(y)) def plot_decision_regions(X, y, classifier, test_idx=None, resolution=0.02): # setup marker generator and color map markers = ('s', 'x', 'o', '^', 'v') colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) # plot the decision surface x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution)) Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T) Z = Z.reshape(xx1.shape) plt.contourf(xx1, xx2, Z, alpha=0.3, cmap=cmap) plt.xlim(xx1.min(), xx1.max()) plt.ylim(xx2.min(), xx2.max()) for idx, cl in enumerate(np.unique(y)): plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.8, c=colors[idx], marker=markers[idx], label=cl, edgecolor='black') if test_idx: # plot all samples X_test, y_test = X[test_idx, :], y[test_idx] plt.scatter(X_test[:, 0], X_test[:, 1], c='y', edgecolor='black', alpha=1.0, linewidth=1, marker='o', s=100, label='test set') forest = RandomForestClassifier(criterion='gini', n_estimators=20,#叠加20决策树 random_state=1, n_jobs=4)#多少随机数进行运算 forest.fit(X_train, y_train) plot_decision_regions(X_combined, y_combined, classifier=forest, test_idx=range(105, 150)) plt.xlabel('petal length [cm]') plt.ylabel('petal width [cm]') plt.legend(loc='upper left') plt.tight_layout() #plt.savefig('images/03_22.png', dpi=300) plt.show()
以上代码主要是导入了一些常用的python第三方库,包括matplotlib,numpy,sklearn等,对数据集进行处理,并使用随机森林分类器训练模型。其中,iris数据集是一个常用的分类数据集,包含了150个样本和4个特征,随机森林分类器是一种集成学习方法,可以用于分类和回归任务等。plot_decision_regions函数用于绘制分类区域的边界,通过将数据集分成训练集和测试集,并用测试集数据绘制不同颜色的散点图,以展示分类结果。
阅读全文