def build_discriminator(self): model = Sequential() model.add(Conv2D(64, kernel_size=(3, 3), strides=(2, 2), padding='same', input_shape=(64, 64, 3))) model.add(BatchNormalization()) model.add(LeakyReLU()) model.add(Conv2D(128, kernel_size=(3, 3), strides=(2, 2), padding='same')) model.add(BatchNormalization()) model.add(LeakyReLU()) model.add(Conv2D(256, kernel_size=(3, 3), strides=(2, 2), padding='same')) model.add(BatchNormalization()) model.add(LeakyReLU()) model.add(MaxPooling2D((2, 2))) model.add(Flatten()) model.add(Dense(2, activation='sigmoid')) return model 最后报错ValueError: Input 0 of layer dense_1 is incompatible with the layer: expected axis -1 of input shape to have value 4096 but received input with shape (None, 1024),如何修改
时间: 2023-10-08 16:07:40 浏览: 143
该错误提示表明,在最后一个Dense层中,期望的输入数据维度为4096,但实际传入的数据的最后一个维度为1024,因此维度不匹配。
解决方法是在 `Flatten()` 层后面添加一层 `Dense` 层,将数据从二维形状展平为一维形状,并且将维度扩展为4096。可以将这个Dense层的输出维度设置为4096,代码如下:
```
def build_discriminator(self):
model = Sequential()
model.add(Conv2D(64, kernel_size=(3, 3), strides=(2, 2), padding='same', input_shape=(64, 64, 3)))
model.add(BatchNormalization())
model.add(LeakyReLU())
model.add(Conv2D(128, kernel_size=(3, 3), strides=(2, 2), padding='same'))
model.add(BatchNormalization())
model.add(LeakyReLU())
model.add(Conv2D(256, kernel_size=(3, 3), strides=(2, 2), padding='same'))
model.add(BatchNormalization())
model.add(LeakyReLU())
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(4096, activation='relu')) # 添加这一行
model.add(Dense(2, activation='sigmoid'))
return model
```
这样,就可以将输入数据的维度从 (None, 1024) 扩展为 (None, 4096),使其与最后一个Dense层期望的维度匹配,从而解决这个错误。
阅读全文