创建两个2D NumPy数组:arr3的值为[[1,2],[3,4]],arr4的值为【[5,6],[7,8]]。使用np将这些数组垂直和水平连接起来
时间: 2024-09-20 21:02:02 浏览: 65
可以使用NumPy的`vstack`函数(垂直堆叠)和`hstack`函数(水平堆叠)来创建所需的二维数组。首先,我们创建arr3和arr4:
```python
import numpy as np
# 创建数组 arr3
arr3 = np.array([[1, 2], [3, 4]])
# 创建数组 arr4
arr4 = np.array([[5, 6], [7, 8]])
```
接下来,我们可以将它们垂直堆叠(沿着列方向):
```python
# 使用 vstack 连接 arr3 和 arr4
arr_vstacked = np.vstack((arr3, arr4))
print("Vertical stacked array:")
print(arr_vstacked)
```
这会得到:
```
[[1 2]
[3 4]
[5 6]
[7 8]]
```
然后,如果想要水平堆叠(沿着行方向),则使用 `hstack`:
```python
# 使用 hstack 连接 arr3 和 arr4
arr_hstacked = np.hstack((arr3, arr4))
print("\nHorizontal stacked array:")
print(arr_hstacked)
```
这会得到:
```
[[1 2 5 6]
[3 4 7 8]]
```
相关问题
对一个n*m的2D numpy数组求平均值,获得1*m的1D数组
可以使用numpy的mean函数,设定axis参数为0来计算每列的平均值,得到一个1*m的1D数组。
示例代码如下:
```python
import numpy as np
# 生成一个n*m的2D numpy数组
n = 3
m = 4
arr = np.random.rand(n, m)
# 计算每列的平均值,得到一个1*m的1D数组
mean_arr = np.mean(arr, axis=0)
print(mean_arr)
```
输出:
```
[0.4153799 0.50885138 0.46834348 0.49067311]
```
创建一个2D数组arr5,其值为[[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]。使用np沿着垂直轴将这个数组分成两个相等的部分。用hsplit
在Python的NumPy库中,你可以使用`hstack`函数来沿水平方向堆叠数组,而要沿着垂直轴(即行方向)分割数组,你应该使用`vsplit`函数。首先,我们需要创建一个2D数组arr5,然后使用`vsplit`将其分为两部分。
这是一个示例代码:
```python
import numpy as np
# 创建2D数组
arr5 = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]])
# 沿着垂直轴(行)将数组分成两半
half_size = arr5.shape[0] // 2 # 获取数组行数的一半
arr_half1 = arr5[:half_size]
arr_half2 = arr5[half_size:]
# 现在arr_half1和arr_half2分别包含原数组上半部分和下半部分
print("第一部分:")
print(arr_half1)
print("\n第二部分:")
print(arr_half2)
# 使用vsplit函数可以得到原始形式的分割数组
split_arr = np.vsplit(arr5, 2) # vsplit直接返回一个二维元组列表
print("\n使用vsplit的结果(二维元组列表):")
for i, part in enumerate(split_arr):
print(f"Part {i+1}:")
print(part)
```
阅读全文
相关推荐
















