如何把#对微调数据进行分词处理 train_seg = [] for line in train: seg_list = seg.cut(line.strip()) train_seg.append(' '.join(seg_list)) #print(train_seg) #加载标签数据 with open("D:\用来微调的模型\分词后贵港市港南区:高质量推动农业机械化.txt", 'r', encoding='utf-8') as f: label = f.readlines() #将标签数据转换为数字标签 label_dict = {} num_labels = 0 for line in label: if line.strip() not in label_dict: label_dict[line.strip()] = num_labels num_labels += 1 y_train = [label_dict[line.strip()] for line in label] 训练数据和标签数据的数量变得一致
时间: 2023-06-24 17:09:17 浏览: 93
可以使用以下代码将训练数据和标签数据的数量变得一致:
```
# 对训练数据进行分词处理
train_seg = []
for line in train:
seg_list = seg.cut(line.strip())
train_seg.append(' '.join(seg_list))
# 加载标签数据
with open("D:\用来微调的模型\分词后贵港市港南区:高质量推动农业机械化.txt", 'r', encoding='utf-8') as f:
label = f.readlines()
# 将标签数据转换为数字标签
label_dict = {}
num_labels = 0
for line in label:
if line.strip() not in label_dict:
label_dict[line.strip()] = num_labels
num_labels += 1
# 确保训练数据和标签数据数量一致
if len(train_seg) > len(y_train):
train_seg = train_seg[:len(y_train)]
else:
y_train = y_train[:len(train_seg)]
```
相关问题
import pkuseg from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import SVC import joblib #加载 pkuseg 预训练模型 seg = pkuseg.pkuseg() #加载用来微调数据 with open("D:\统计数据原始数据\贵港市港南区:高质量推动农业机械化.txt", 'r', encoding='utf-8') as f: train = f.readlines() #对微调数据进行分词处理 train_seg = [] for line in train: seg_list = seg.cut(line.strip()) train_seg.append(' '.join(seg_list)) #print(train_seg) #加载标签数据 with open("D:\用来微调的模型\分词后贵港市港南区:高质量推动农业机械化.txt", 'r', encoding='utf-8') as f: label = f.readlines() #将标签数据转换为数字标签 label_dict = {} num_labels = 0 for line in label: if line.strip() not in label_dict: label_dict[line.strip()] = num_labels num_labels += 1 y_train = [label_dict[line.strip()] for line in label] #使用 TfidfVectorizer 将文本数据转换为向量表示 vectorizer = TfidfVectorizer() X_train = vectorizer.fit_transform(train_seg) #使用 SVM 进行分类 svm = SVC() svm.fit(X_train, y_train)
这段代码是使用 pkuseg 对文本进行分词处理,然后使用 TfidfVectorizer 将文本数据转换为向量表示,最后使用 SVM 进行分类。具体来说,先读取微调数据和标签数据,对微调数据进行分词处理,将标签数据转换为数字标签,然后使用 TfidfVectorizer 对分词后的微调数据进行向量化处理,最后使用 SVM 对向量化后的数据进行分类。
设置训练和验证集路径 train_vol_path = "data/train/trainvol" train_seg_path = "data/train/trainseg" val_vol_path = "data/val/valvol" val_seg_path = "data/val/valseg" # 定义数据生成器 train_datagen = ImageDataGenerator(rescale=1./255) val_datagen = ImageDataGenerator(rescale=1./255) # 加载训练和验证数据 train_vol = train_datagen.flow_from_directory(train_vol_path, target_size=(256, 256), batch_size=32, class_mode=None) train_seg = train_datagen.flow_from_directory(train_seg_path, target_size=(256, 256), batch_size=32, class_mode=None) val_vol = val_datagen.flow_from_directory(val_vol_path, target_size=(256, 256), batch_size=32, class_mode=None) val_seg = val_datagen.flow_from_directory(val_seg_path, target_size=(256, 256), batch_size=32, class_mode=None) # 合并训练和验证数据 train_generator = zip(train_vol, train_seg) val_generator = zip(val_vol, val_seg) # 定义UNet模型 model = unet() # 编译模型 model.compile(optimizer=Adam(learning_rate=1e-4), loss='binary_crossentropy', metrics=['accuracy'])报错'NoneType' object has no attribute 'compile'怎么改代码
可以尝试将 `class_mode` 参数设置为 `'binary'` 或者其他适合数据集的值,来解决这个问题。修改后的代码如下所示:
```
# 设置训练和验证集路径
train_vol_path = "data/train/trainvol"
train_seg_path = "data/train/trainseg"
val_vol_path = "data/val/valvol"
val_seg_path = "data/val/valseg"
# 定义数据生成器
train_datagen = ImageDataGenerator(rescale=1./255)
val_datagen = ImageDataGenerator(rescale=1./255)
# 加载训练和验证数据
train_vol = train_datagen.flow_from_directory(train_vol_path, target_size=(256, 256), batch_size=32, class_mode='binary')
train_seg = train_datagen.flow_from_directory(train_seg_path, target_size=(256, 256), batch_size=32, class_mode='binary')
val_vol = val_datagen.flow_from_directory(val_vol_path, target_size=(256, 256), batch_size=32, class_mode='binary')
val_seg = val_datagen.flow_from_directory(val_seg_path, target_size=(256, 256), batch_size=32, class_mode='binary')
# 合并训练和验证数据
train_generator = zip(train_vol, train_seg)
val_generator = zip(val_vol, val_seg)
# 定义UNet模型
model = unet()
# 编译模型
model.compile(optimizer=Adam(learning_rate=1e-4), loss='binary_crossentropy', metrics=['accuracy'])
```
阅读全文
相关推荐
















