newname = "%s\%s"%(root,i[i.rindex("_")+1:len(i)]) ValueError: substring not found

时间: 2024-04-30 14:20:51 浏览: 11
这个错误通常是因为 `i` 这个字符串中不包含下划线 `_`,从而导致 `i.rindex("_")` 这个函数无法找到 `_` 的位置。 你可以使用 `if` 语句检查一下 `i` 是否包含 `_`,例如: ```python if "_" in i: newname = "%s\%s"%(root,i[i.rindex("_")+1:len(i)]) else: # 处理 i 不包含下划线的情况 pass ``` 这样就可以避免出现 `ValueError: substring not found` 的错误了。
相关问题

i_test = 0 print('-'*30) print('Creating test images...') print('-'*30) imgs_test = glob.glob(self.test_path+"/*."+"bmp") print(len(imgs_test)) imgdatas_test = np.ndarray((len(imgs_test),self.img_rows,self.img_cols,1), dtype=np.uint8) for imgname_test in imgs_test: midname_test = imgname_test[imgname_test.rindex("/")+1:] img_test = load_img(self.test_path + "/" + midname_test,grayscale = True) #img_test = scipy.io.loadmat(self.test_path + "/" + midname_test) #img_test = img_test['src'] #img_test=img_test.resize(hw) img_test = img_to_array(img_test) imgdatas_test[i_test] = img_test i_test += 1 print('loading test images done') imgs_test = imgdatas_test.astype('float32') imgs_test /= 255 return imgs_train, imgs_mask_train, imgs_test

这段代码是用于读取测试数据集中的图像数据,并将其转换为一个numpy数组。具体来说,它首先通过glob函数获取测试数据集中所有.bmp文件的路径,然后利用load_img函数将每个图像转换为numpy数组,并存储到imgdatas_test数组中。最后,它将imgdatas_test数组中的元素转换为float32类型,并将它们归一化到[0,1]的范围内。函数返回imgs_train, imgs_mask_train, imgs_test三个numpy数组。

class iStr(str): def __init__(self, *args): self.lowered = str.lower(self) def __repr__(self): return '%s(%s)' % (type(self).__name__, str.__repr__(self)) def __hash__(self): return hash(self._lowered) def lower(self): return self._lowered def _make_case_insensitive(name): str_meth = getattr(str, name) def x(self, other, *args): try: other = other.lower() except (TypeError, AttributeError, ValueError): pass return str_meth(self._lowered, other, *args) setattr(iStr, name, x) for name in 'eq lt le gt gt ne contains'.split(): _make_case_insensitive('__%s__' % name) for name in 'count endswith find index rfind rindex startswith'.split(): _make_case_insensitive(name) del _make_case_insensitive 将以上代码逐句逐行进行详细解释,超级超级详细,并且告知该如何输出,举例输出并打印

这段代码定义了一个名为`iStr`的自定义字符串类,它是对内置字符串类`str`的扩展,实现了不区分大小写的字符串比较和操作。 让我们逐句逐行详细解释代码: ```python class iStr(str): ``` 这段代码定义了一个名为`iStr`的类,它继承自内置字符串类`str`。 ```python def __init__(self, *args): self.lowered = str.lower(self) ``` 这是`iStr`类的初始化方法。它接受任意数量的参数,并将调用内置字符串类的`lower`方法将字符串转换为小写形式,并将结果存储在实例变量`lowered`中。 ```python def __repr__(self): return '%s(%s)' % (type(self).__name__, str.__repr__(self)) ``` 这是`iStr`类的字符串表示方法。它返回一个表示该实例的字符串,格式为类名加上原始字符串的表示形式。 ```python def __hash__(self): return hash(self._lowered) ``` 这是`iStr`类的哈希方法。它返回实例的哈希值,使用小写形式的字符串进行哈希运算。 ```python def lower(self): return self._lowered ``` 这是`iStr`类的`lower`方法。它返回实例的小写形式字符串。 ```python def _make_case_insensitive(name): str_meth = getattr(str, name) def x(self, other, *args): try: other = other.lower() except (TypeError, AttributeError, ValueError): pass return str_meth(self._lowered, other, *args) setattr(iStr, name, x) ``` 这是一个辅助函数`_make_case_insensitive`,它用于创建不区分大小写的字符串操作方法。它接受一个字符串方法的名称作为参数。 在函数内部,首先使用`getattr`函数获取内置字符串类`str`中的对应方法。 然后,定义了一个名为`x`的内部函数,它接受实例`self`、其他参数`other`和任意数量的额外参数。在函数内部,尝试将`other`转换为小写形式,并调用原始字符串方法来进行比较或操作。 最后,使用`setattr`函数将新定义的方法`x`添加到`iStr`类中,名称与原始字符串方法的名称相同。 ```python for name in 'eq lt le gt gt ne contains'.split(): _make_case_insensitive('__%s__' % name) ``` 这个循环使用辅助函数`_make_case_insensitive`创建了一系列不区分大小写的比较操作方法,包括等于、小于、小于等于、大于、大于等于、不等于和包含。 ```python for name in 'count endswith find index rfind rindex startswith'.split(): _make_case_insensitive(name) ``` 这个循环使用辅助函数`_make_case_insensitive`创建了一系列不区分大小写的字符串操作方法,包括计数、以什么结尾、查找、索引等。 ```python del _make_case_insensitive ``` 最后,删除了辅助函数`_make_case_insensitive`,以避免在后续代码中被误用。 现在,让我们来看一个使用`iStr`类的示例: ```python s = iStr("Hello World") print(s) # 输出:iStr('Hello World') print(s.lower()) # 输出:hello world print(s.startswith("hello")) # 输出:True print(s.contains("WORLD")) # 输出:True print(s.count("o")) # 输出:2 ``` 在这个示例中,我们创建了一个`iStr`类的实例`s`,并调用了它的一些方法来进行字符串比较和操作。由于`iStr`类实现了不区分大小写的功能,所以不论传入的参数是大写还是小写,都能正确地进行比较和操作,并返回预期的结果。

相关推荐

from tkinter import * from tkinter import messagebox import random class Application(Frame): def init(self, master=None): super().init(master) self.master = master self.pack() self.createWidget() def createWidget(self): self.entry = Entry(self) self.entry.grid(row=0, column=0, columnspan=6, pady=10) btnText = (("MC", "M+", "M-", "MR"), ("C", "±", "/", "✖ "), (7, 8, 9, "-"), (4, 5, 6, "+"), (1, 2, 3, "="), (0, ".")) for rindex, r in enumerate(btnText): for cindex, c in enumerate(r): if c == "C": Button(self, text=c, width=2, command=self.clear) \ .grid(row=rindex + 1, column=cindex, sticky=NSEW) elif c == "=": Button(self, text=c, width=2, command=self.calculate) \ .grid(row=rindex + 1, column=cindex, rowspan=2, sticky=NSEW) elif c == 0: Button(self, text=c, width=2, command=lambda x=c: self.entry.insert(END, str(x))) \ .grid(row=rindex + 1, column=cindex, columnspan=2, sticky=NSEW) elif c == ".": Button(self, text=c, width=2, command=lambda x=c: self.entry.insert(END, str(x))) \ .grid(row=rindex + 1, column=cindex + 1, sticky=NSEW) else: Button(self, text=c, width=2, command=lambda x=c: self.entry.insert(END, str(x))) \ .grid(row=rindex + 1, column=cindex, sticky=NSEW) def clear(self): self.entry.delete(0, END) def calculate(self): try: result = eval(self.entry.get()) if isinstance(result, float): result = round(result, 2) if result < 0: self.entry.delete(0, END) self.entry.insert(END, "-") result = abs(result) self.entry.delete(0, END) self.entry.insert(END, str(result)) except: messagebox.showerror("Error", "Invalid expression") if name == 'main': root = Tk() root.geometry("200x200+200+300") app = Application(master=root) root.mainloop()使这串代码的✖能计算

给我解释一下每段代码的意思from tkinter import * from tkinter import messagebox class Application(Frame): def init(self, master=None): super().init(master) self.master = master self.pack() self.createWidget() def createWidget(self): self.result = Entry(self, width=20, font=('Arial', 16), justify='right') self.result.grid(row=0, column=0, columnspan=4, pady=10) """通过grid布局实现计算器的界面""" btnText = (("MC", "M+", "M-", "MR"), ("C", "±", "/", "*"), (7, 8, 9, "-"), (4, 5, 6, "+"), (1, 2, 3, "="), (0, ".")) for rindex, r in enumerate(btnText): for cindex, c in enumerate(r): if c == "=": Button(self, text=c, width=2, command=lambda text=c: self.buttonClick(text)) \ .grid(row=rindex + 1, column=cindex, rowspan=2, sticky=NSEW) elif c == 0: Button(self, text=c, width=2, command=lambda text=c: self.buttonClick(text)) \ .grid(row=rindex + 1, column=cindex, columnspan=2, sticky=NSEW) elif c == ".": Button(self, text=c, width=2, command=lambda text=c: self.buttonClick(text)) \ .grid(row=rindex + 1, column=cindex + 1, sticky=NSEW) else: Button(self, text=c, width=2, command=lambda text=c: self.buttonClick(text)) \ .grid(row=rindex + 1, column=cindex, sticky=NSEW) def buttonClick(self, text): current = self.result.get() if text == "C": self.result.delete(0, END) elif text == "±": if current.startswith("-"): self.result.delete(0) else: self.result.insert(0, "-") elif text == "=": try: result = eval(current) self.result.delete(0, END) self.result.insert(0, result) except: messagebox.showerror("Error", "Invalid input") else: self.result.insert(END, text) if name == 'main': root = Tk() root.geometry("250x250+200+300") app = Application(master=root) root.mainloop()

我们要讨论一个关于计算光线追迹的程序,我会展示一些python代码,请从光学追迹的角度考虑其功能实现。 请详细解释以下python代码: python def create_cemented_doublet(power=0., bending=0., th=None, sd=1., glasses=('N-BK7,Schott', 'N-F2,Schott'), **kwargs): from opticalglass.spectral_lines import get_wavelength # type: ignore from opticalglass import util wvls = np.array([get_wavelength(w) for w in ['d', 'F', 'C']]) gla_a = gfact.create_glass(glasses[0]) rndx_a = gla_a.calc_rindex(wvls) Va, PcDa = util.calc_glass_constants(*rndx_a) gla_b = gfact.create_glass(glasses[1]) rndx_b = gla_b.calc_rindex(wvls) Vb, PcDb = util.calc_glass_constants(*rndx_b) power_a, power_b = achromat(power, Va, Vb) if th is None: th = sd/4 t1 = 3*th/4 t2 = th/4 if power_a < 0: t1, t2 = t2, t1 lens_a = lens_from_power(power=power_a, bending=bending, th=t1, sd=sd, med=gla_a) cv1, cv2, t1, indx_a, sd = lens_a # cv1 = power_a/(rndx_a[0] - 1) # delta_cv = -cv1/2 # cv1 += delta_cv # cv2 = delta_cv # cv3 = power_b/(1 - rndx_b[0]) + delta_cv indx_b = rndx_b[0] cv3 = (power_b/(indx_b-1) - cv2)/((t2*cv2*(indx_b-1)/indx_b) - 1) s1 = Surface(profile=Spherical(c=cv1), max_ap=sd, delta_n=(rndx_a[0] - 1)) s2 = Surface(profile=Spherical(c=cv2), max_ap=sd, delta_n=(rndx_b[0] - rndx_a[0])) s3 = Surface(profile=Spherical(c=cv3), max_ap=sd, delta_n=(1 - rndx_b[0])) g1 = Gap(t=t1, med=gla_a) g2 = Gap(t=t2, med=gla_b) g_tfrm = np.identity(3), np.array([0., 0., 0.]) ifc_list = [] ifc_list.append([0, s1, g1, 1, g_tfrm]) ifc_list.append([1, s2, g2, 1, g_tfrm]) ifc_list.append([2, s3, None, 1, g_tfrm]) ce = CementedElement(ifc_list) tree = ce.tree() return [[s1, g1, None, rndx_a, 1], [s2, g2, None, rndx_b, 1], [s3, None, None, 1, 1]], [ce], tree

最新推荐

recommend-type

基于Selenium的Java爬虫实战(内含谷歌浏览器Chrom和Chromedriver版本116.0.5808.0)

资源包括: 1.Java爬虫实战代码 2.selenium学习笔记 3.代码演示视频 4.谷歌浏览器chrom116.0.5808.0 chrome-linux64.zip chrome-mac-arm64.zip chrome-mac-x64.zip chrome-win32.zip chrome-win64.zip 5.谷歌浏览器驱动器Chromedriver116.0.5808.0 chromedriver-linux64.zip chromedriver-mac-arm64.zip chromedriver-mac-x64.zip chromedriver-win32.zip chromedriver-win64.zip 特别说明:Chrome 为测试版(不会自动更新) 仅适用于自动测试。若要进行常规浏览,请使用可自动更新的标准版 Chrome。)
recommend-type

2024消费趋势报告.pdf

2024消费趋势报告.pdf
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

确保MATLAB回归分析模型的可靠性:诊断与评估的全面指南

![确保MATLAB回归分析模型的可靠性:诊断与评估的全面指南](https://img-blog.csdnimg.cn/img_convert/4b823f2c5b14c1129df0b0031a02ba9b.png) # 1. 回归分析模型的基础** **1.1 回归分析的基本原理** 回归分析是一种统计建模技术,用于确定一个或多个自变量与一个因变量之间的关系。其基本原理是拟合一条曲线或超平面,以最小化因变量与自变量之间的误差平方和。 **1.2 线性回归和非线性回归** 线性回归是一种回归分析模型,其中因变量与自变量之间的关系是线性的。非线性回归模型则用于拟合因变量与自变量之间非
recommend-type

引发C++软件异常的常见原因

1. 内存错误:内存溢出、野指针、内存泄漏等; 2. 数组越界:程序访问了超出数组边界的元素; 3. 逻辑错误:程序设计错误或算法错误; 4. 文件读写错误:文件不存在或无法打开、读写权限不足等; 5. 系统调用错误:系统调用返回异常或调用参数错误; 6. 硬件故障:例如硬盘损坏、内存损坏等; 7. 网络异常:网络连接中断、网络传输中断、网络超时等; 8. 程序异常终止:例如由于未知原因导致程序崩溃等。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

打造高性能MATLAB回归分析模型:特征工程的艺术

![matlab回归分析](http://blog.fens.me/wp-content/uploads/2016/07/m01.png) # 1. 回归分析模型概述 回归分析是一种预测建模技术,用于建立自变量和因变量之间的关系。在回归模型中,因变量是我们要预测的目标变量,而自变量是影响因变量的输入变量。 回归分析模型的目的是找到一个数学方程,该方程可以准确地预测因变量的值,给定自变量的值。该方程通常表示为: ``` y = b0 + b1x1 + b2x2 + ... + bnxn ``` 其中: * y 是因变量 * x1、x2、...、xn 是自变量 * b0、b1、...、b
recommend-type

爬取虎牙直播的英雄联盟板块热度并可视化显示

抱歉,作为AI语言模型,我无法执行网络爬虫操作。但我可以提供一个大体的思路: 1. 使用Python的requests库向虎牙直播英雄联盟板块的页面发送请求,获取页面内容。 2. 使用BeautifulSoup库解析页面内容,提取出热度相关的信息。 3. 使用matplotlib等可视化库将热度数据进行可视化展示。 需要注意的是,网站的爬取需要遵守相关法律法规和网站的使用协议,否则可能会引起法律问题。