用中文解答下题Let A = {a, b, c} and B = P(A). 1) Prove that [B; ∪ , ∩ ,~] is a Boolean algebra. 2) Write out the operation tables for the Boolean algebra.
时间: 2023-06-17 22:05:29 浏览: 139
1) 首先需要证明[B; ∪ , ∩ ,~]满足Boolean代数的四个公理:结合律、交换律、分配律和互补律。
结合律:对于任意的A,B,C∈B,有(A∪B)∪C=A∪(B∪C)和(A∩B)∩C=A∩(B∩C)。这是因为集合的并、交运算符都满足结合律。
交换律:对于任意的A,B∈B,有A∪B=B∪A和A∩B=B∩A。这是因为集合的并、交运算符都满足交换律。
分配律:对于任意的A,B,C∈B,有A∪(B∩C)=(A∪B)∩(A∪C)和A∩(B∪C)=(A∩B)∪(A∩C)。这是因为集合的并、交运算符都满足分配律。
互补律:对于任意的A∈B,有A∪~A=A和A∩~A=∅。这是因为集合的补集~A定义为A的所有元素的补集,即~A={x∣x∉A},A∪~A=A∩~A=A的所有元素的集合,因此满足互补律。
由此可知[B; ∪ , ∩ ,~]是一个Boolean代数。
2) 接下来是[B; ∪ , ∩ ,~]的操作表:
并集 ∪:
| | a | b | c |
|---|---|---|---|
| a | a | a | a |
| b | a | b | b |
| c | a | b | c |
交集 ∩:
| | a | b | c |
|---|---|---|---|
| a | a | ∅ | ∅ |
| b | ∅ | b | ∅ |
| c | ∅ | ∅ | c |
补集 ~:
| | a | b | c |
|---|---|---|---|
| | b,c | a,c | a,b |
其中,∅代表空集。
相关问题
Let A, B,C and D be sets. Prove that (A × B) ∩ (C × D) = (A ∩ C) × (B ∩ D).
答案:我们可以证明两个集合相等的方法是证明它们互相包含。首先,假设 (x, y) 属于 (A × B) ∩ (C × D),那么 x 属于 A 且 y 属于 B,同时 x 属于 C 且 y 属于 D。因此,x 属于 A ∩ C 且 y 属于 B ∩ D,即 (x, y) 属于 (A ∩ C) × (B ∩ D)。因此,(A × B) ∩ (C × D) 包含于 (A ∩ C) × (B ∩ D)。
反过来,假设 (x, y) 属于 (A ∩ C) × (B ∩ D),那么 x 属于 A 且 x 属于 C,同时 y 属于 B 且 y 属于 D。因此,(x, y) 属于 A × B 且 (x, y) 属于 C × D,即 (x, y) 属于 (A × B) ∩ (C × D)。因此,(A ∩ C) × (B ∩ D) 包含于 (A × B) ∩ (C × D)。
因此,我们证明了两个集合互相包含,从而证明了它们相等。
Exercise 4. Let � = {�, �, �} and � = P(�). 1) Prove that [�; ∪ , ∩ ,�] is a Boolean algebra. 2) Write out the operation tables for the
Boolean algebra [�; ∪ , ∩ ,�].
1) To prove that [�; ∪ , ∩ ,�] is a Boolean algebra, we need to show that it satisfies the following properties:
i) Closure under complementation: For any element � in �, there exists an element � in � such that � ∪ � = � and � ∩ � = �.
ii) Closure under union and intersection: For any elements �, � in �, there exists an element � in � such that � ∪ � and � ∩ � are in �.
iii) Associativity of union and intersection: For any elements �, �, � in �, (� ∪ �) ∪ � = � ∪ (� ∪ �) and (� ∩ �) ∩ � = � ∩ (� ∩ �).
iv) Commutativity of union and intersection: For any elements �, � in �, � ∪ � = � ∪ � and � ∩ � = � ∩ �.
v) Distributivity of union over intersection and intersection over union: For any elements �, �, � in �, � ∪ (� ∩ �) = (� ∪ �) ∩ (� ∪ �) and � ∩ (� ∪ �) = (� ∩ �) ∪ (� ∩ �).
vi) Identity elements: There exist two elements �, � in � such that for any element � in �, � ∪ � = � and � ∩ � = �.
vii) Complement elements: For any element � in �, there exists an element � in � such that � ∪ � = � and � ∩ � = �.
All of these properties are satisfied by [�; ∪ , ∩ ,�], so it is indeed a Boolean algebra.
2) Here are the operation tables for [�; ∪ , ∩ ,�]:
```
∪ 0 1 2
_____
0| 0 1 2
1| 1 1 2
2| 2 2 2
∩ 0 1 2
_____
0| 0 0 0
1| 0 1 1
2| 0 1 2
� 0 1 2
_____
| 2 1 0
```
阅读全文