stm32串口接收字符串读取

时间: 2023-06-25 07:02:56 浏览: 212
### 回答1: STM32是一款高性能的单片机,它具有广泛的应用领域,其中串口通信是非常常见的一种应用场景。当我们需要使用STM32来接收串口字符串时,我们需要按照以下步骤进行操作。 首先,我们需要实现串口的初始化配置,包括波特率、数据位、校验位以及停止位等等参数设置。接着,我们需要定义一个缓冲区来存储接收到的字符串,这个缓冲区的大小需要根据实际需求来确定。 当串口接收到数据后,我们需要在中断处理函数中对接收到的数据进行处理,将每一个字符存储到缓冲区中。当我们接收到的字符为'\r'或者'\n'的时候,说明接收到的字符串已经结束,需要对该字符串进行处理,并且清空缓冲区以存储下一个字符串。 需要注意的是,在串口接收字符串的过程中,我们需要避免缓冲区溢出的问题,这是因为如果串口接收的数据量超过了缓冲区的大小,就会导致数据丢失或者系统崩溃的问题。因此,我们需要在编写程序时充分考虑缓冲区的容量。 总之,STM32串口接收字符串的读取是一个相对复杂的过程,需要考虑多方面的因素,包括初始化配置、中断处理、缓冲区的存储容量等等。只有充分理解这些因素,并且在编程实现的时候严格遵循相关规范,才能实现一个稳定可靠的串口通信模块。 ### 回答2: 在STM32单片机中,要实现串口接收字符串的读取,需要先进行串口初始化设置,包括波特率、数据位、校验位、停止位等参数。一般可以使用HAL库提供的相关函数进行设置。 接下来,需要在中断回调函数中对接收到的字符串进行处理。可以使用HAL库提供的USART_IRQHandler函数进行串口中断处理,并在该函数中使用HAL_UART_Receive函数读取串口数据。读取的数据可通过缓冲区进行存储,当接收到指定字符结束标志(如"\r\n")时,将缓冲区中的数据进行处理即可。 例如,以下是一个简单的实现串口接收字符串并打印的代码示例: ``` #include "main.h" #include "stm32f1xx_hal.h" UART_HandleTypeDef huart1; char receive_buffer[50]; void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_USART1_UART_Init(void); int main(void) { HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_USART1_UART_Init(); while (1) { if(HAL_UART_Receive(&huart1, &receive_buffer, 1, HAL_MAX_DELAY) == HAL_OK) { if(strstr(receive_buffer, "\r\n")) { HAL_UART_Transmit(&huart1, (uint8_t *)"Received string: ", strlen("Received string: "), HAL_MAX_DELAY); HAL_UART_Transmit(&huart1, (uint8_t *)receive_buffer, strlen(receive_buffer), HAL_MAX_DELAY); memset(receive_buffer, 0, strlen(receive_buffer)); //清空接收缓冲区 } } } } void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; RCC_PeriphCLKInitTypeDef PeriphClkInit = {0}; __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSE; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART1; PeriphClkInit.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK1; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) { Error_Handler(); } } static void MX_USART1_UART_Init(void) { huart1.Instance = USART1; huart1.Init.BaudRate = 115200; huart1.Init.WordLength = UART_WORDLENGTH_8B; huart1.Init.StopBits = UART_STOPBITS_1; huart1.Init.Parity = UART_PARITY_NONE; huart1.Init.Mode = UART_MODE_TX_RX; huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart1.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart1) != HAL_OK) { Error_Handler(); } } static void MX_GPIO_Init(void) { __HAL_RCC_GPIOC_CLK_ENABLE(); GPIO_InitTypeDef GPIO_InitStruct = {0}; GPIO_InitStruct.Pin = GPIO_PIN_13; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); } ``` 其中,串口的接收中断回调函数为USART1_IRQHandler,在该函数中通过判断接收到的数据是否包含指定的结束符"\r\n",如果是,则将缓冲区中的字符串通过串口发送出去,并清空缓冲区。在主函数中,通过调用HAL_UART_Receive函数读取串口数据,并将其存储到缓冲区中。此外,该示例中还包括了对系统时钟、GPIO和串口的初始化设置。 ### 回答3: 在STM32中,串口接收字符串的读取是非常常见的操作。为了接收数据,我们通常会使用UART或USART模块。串口接收字符串可分为两个步骤:首先,需要使串口接收数据;接下来,需要解析接收到的数据。 首先,我们需要配置STM32的串口模块。配置可以在STM32的CubeMX中完成,也可以手动编写代码进行配置。我们需要配置串口工作的波特率、数据位数、停止位数等。同时,还需开启中断以便接收数据时能够触发相应的中断服务程序。 其次,我们需要解析接收到的数据。通常,STM32通过中断机制接收串口数据。串口接收数据时,我们需要在中断服务程序中将数据存储到缓冲区中。当接收到一整条字符串后,我们需要解析字符串。 此时,我们可以使用字符串函数库或自己编写字符串解析函数。在解析过程中,我们可以根据数据的格式来组织数据。如果我们需要使用解析后的数据来控制其他设备,则需要将数据格式化为特定格式的数据帧。 总体而言,串口接收字符串读取在STM32中的操作比较简单,主要分为两个步骤:配置串口模块和解析接收到的数据。通过这些操作,我们可以方便地获取外设发送的数据,并按照需要格式化和处理数据,从而实现具体的应用需求。

相关推荐

最新推荐

recommend-type

Python 实现Serial 与STM32J进行串口通讯

4. 字符串长度的处理:在发送字符串后,需要知道发送了多少字符,以便正确读取回应,否则可能导致读取阻塞。 5. Python的`raw_input`函数:用于从用户获取输入,未指定编码时默认接收ASCII字符。 了解这些知识点后...
recommend-type

UART串口字符串接收程序

_UART串口字符串接收程序 在本节中,我们将详细介绍UART串口字符串接收程序的知识点,该程序用于在EasyARM2131(2132芯片)中实验,使用串口精灵发送5K文本文件,能准确回送显示(波特率为115200,收发时间小于1秒...
recommend-type

基于嵌入式ARMLinux的播放器的设计与实现 word格式.doc

本文主要探讨了基于嵌入式ARM-Linux的播放器的设计与实现。在当前PC时代,随着嵌入式技术的快速发展,对高效、便携的多媒体设备的需求日益增长。作者首先深入剖析了ARM体系结构,特别是针对ARM9微处理器的特性,探讨了如何构建适用于嵌入式系统的嵌入式Linux操作系统。这个过程包括设置交叉编译环境,优化引导装载程序,成功移植了嵌入式Linux内核,并创建了适合S3C2410开发板的根文件系统。 在考虑到嵌入式系统硬件资源有限的特点,通常的PC机图形用户界面(GUI)无法直接应用。因此,作者选择了轻量级的Minigui作为研究对象,对其实体架构进行了研究,并将其移植到S3C2410开发板上,实现了嵌入式图形用户界面,使得系统具有简洁而易用的操作界面,提升了用户体验。 文章的核心部分是将通用媒体播放器Mplayer移植到S3C2410开发板上。针对嵌入式环境中的音频输出问题,作者针对性地解决了Mplayer播放音频时可能出现的不稳定性,实现了音乐和视频的无缝播放,打造了一个完整的嵌入式多媒体播放解决方案。 论文最后部分对整个项目进行了总结,强调了在嵌入式ARM-Linux平台上设计播放器所取得的成果,同时也指出了一些待改进和完善的方面,如系统性能优化、兼容性提升以及可能的扩展功能等。关键词包括嵌入式ARM-Linux、S3C2410芯片、Mplayer多媒体播放器、图形用户界面(GUI)以及Minigui等,这些都反映出本文研究的重点和领域。 通过这篇论文,读者不仅能了解到嵌入式系统与Linux平台结合的具体实践,还能学到如何在资源受限的环境中设计和优化多媒体播放器,为嵌入式技术在多媒体应用领域的进一步发展提供了有价值的经验和参考。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python字符串为空判断的动手实践:通过示例掌握技巧

![Python字符串为空判断的动手实践:通过示例掌握技巧](https://img-blog.csdnimg.cn/72f88d4fc1164d6c8b9c29d8ab5ed75c.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASGFyYm9yIExhdQ==,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. Python字符串为空判断的基础理论 字符串为空判断是Python编程中一项基本且重要的任务。它涉及检查字符串是否为空(不包含任何字符),这在
recommend-type

box-sizing: border-box;作用是?

`box-sizing: border-box;` 是 CSS 中的一个样式属性,它改变了元素的盒模型行为。默认情况下,浏览器会计算元素内容区域(content)、内边距(padding)和边框(border)的总尺寸,也就是所谓的"标准盒模型"。而当设置为 `box-sizing: border-box;` 后,元素的总宽度和高度会包括内容、内边距和边框的总空间,这样就使得开发者更容易控制元素的实际布局大小。 具体来说,这意味着: 1. 内容区域的宽度和高度不会因为添加内边距或边框而自动扩展。 2. 边框和内边距会从元素的总尺寸中减去,而不是从内容区域开始计算。
recommend-type

经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf

本文主要探讨的是"经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf",该研究专注于嵌入式指纹识别技术在实际应用中的设计和实现。嵌入式指纹识别系统因其独特的优势——无需外部设备支持,便能独立完成指纹识别任务,正逐渐成为现代安全领域的重要组成部分。 在技术背景部分,文章指出指纹的独特性(图案、断点和交叉点的独一无二性)使其在生物特征认证中具有很高的可靠性。指纹识别技术发展迅速,不仅应用于小型设备如手机或门禁系统,也扩展到大型数据库系统,如连接个人电脑的桌面应用。然而,桌面应用受限于必须连接到计算机的条件,嵌入式系统的出现则提供了更为灵活和便捷的解决方案。 为了实现嵌入式指纹识别,研究者首先构建了一个专门的开发平台。硬件方面,详细讨论了电源电路、复位电路以及JTAG调试接口电路的设计和实现,这些都是确保系统稳定运行的基础。在软件层面,重点研究了如何在ARM芯片上移植嵌入式操作系统uC/OS-II,这是一种实时操作系统,能够有效地处理指纹识别系统的实时任务。此外,还涉及到了嵌入式TCP/IP协议栈的开发,这是实现系统间通信的关键,使得系统能够将采集的指纹数据传输到远程服务器进行比对。 关键词包括:指纹识别、嵌入式系统、实时操作系统uC/OS-II、TCP/IP协议栈。这些关键词表明了论文的核心内容和研究焦点,即围绕着如何在嵌入式环境中高效、准确地实现指纹识别功能,以及与外部网络的无缝连接。 这篇论文不仅深入解析了嵌入式指纹识别系统的硬件架构和软件策略,而且还展示了如何通过结合嵌入式技术和先进操作系统来提升系统的性能和安全性,为未来嵌入式指纹识别技术的实际应用提供了有价值的研究成果。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

Python字符串为空判断的常见问题解答:解决常见疑惑

![字符串为空判断](https://img-blog.csdnimg.cn/20210620130654176.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl8zOTQ0NTExNg==,size_16,color_FFFFFF,t_70) # 1. Python字符串为空判断的必要性 在Python编程中,字符串为空判断是至关重要的,它可以帮助我们处理各种场景,例如: - 数据验证:确保用户输入或从数据库获取的
recommend-type

c++ 中 static的作用

在C++中,static是一个常用的修饰符,它可以用来控制变量和函数的存储方式和可见性。static的作用主要有以下几个方面: 1. 静态局部变量:在函数内部定义的变量,加上static关键字后,该变量就被定义成为一个静态局部变量。静态局部变量只会被初始化一次,而且只能在函数内部访问,函数结束后仍然存在,直到程序结束才会被销毁。 2. 静态全局变量:在全局变量前加上static关键字,该变量就被定义成为一个静态全局变量。静态全局变量只能在当前文件中访问,其他文件无法访问,它的生命周期与程序的生命周期相同。 3. 静态成员变量:在类中定义的静态成员变量,可以被所有该类的对象共享,它的值在所