A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent • Candidates: a, b, c, d, e • Hash entries • {ab, ad, ae} • {bd, be, de} • … • Frequent 1-itemset: a, b, d, e • ab is not a candidate 2-itemset if the sum of count of {ab, ad, ae} is below support threshold • J. Park, M. Chen, and P. Yu. An effective hash-based algorithm for mining association rules. SIGMOD’95 count itemsets 35 {ab, ad, ae} {yz, qs, wt}翻译成中文,解释
时间: 2024-04-01 12:35:38 浏览: 111
一个哈希桶计数低于阈值的k项集不可能是频繁项集 • 候选项: a, b, c, d, e • 哈希条目 • {ab, ad, ae} • {bd, be, de} • … • 频繁的1项集: a, b, d, e • 如果{ab, ad, ae}的计数总和低于支持阈值,则ab不是候选的2项集 • J. Park, M. Chen, and P. Yu. An effective hash-based algorithm for mining association rules. SIGMOD'95 计数项集35 {ab, ad, ae} {yz, qs, wt}
此段文字描述了使用哈希算法对项集进行关联规则挖掘的过程。其中,k项集指包含k个项的项集,哈希桶是将项集映射到桶中的数据结构。如果一个k项集的哈希桶计数低于设定的阈值,则该项集不可能是频繁项集。候选项是指在挖掘频繁项集时,可能成为频繁项集的项。该算法通过计算项集的计数来判断其是否是频繁项集,如果某个2项集的计数总和低于支持阈值,则该2项集不是候选项。
相关问题
def generate_candidates(prev_candidates, k): candidates = set() # 对于每一对不同的前缀,将其连接起来生成一个长度为 k 的候选项集 for i in prev_candidates: for j in prev_candidates: if len(i.union(j)) == k: candidates. (i.union(j)) return candidates # 定义 Apriori 算法主函数 def apriori(transactions, support_threshold): # 初始化候选项集 candidates = set() for in transactions: for item in transaction: candidates. (frozenset([item])) # 遍历项集长度从 1 到 N,生成所有频繁项集 freq_itemsets = [] k = 1 while candidates: # 统计候选项集在数据集中出现的次数 counts = {c: 0 for c in candidates} for transaction in transactions: for candidate in candidates: if candidate.issubset(transaction): counts[ ] += 1 # 过滤掉不满足支持度阈值要求的候选项集 freq_candidates=[c for c in candidates if counts[c] / len(transactions) >= ] freq_itemsets. (freq_candidates) # 生成下一级候选项集 k += 1 candidates = (freq_candidates, k) return freq_itemsets # 示例数据集 transactions = [ {'A', 'B', 'C'}, {'A', 'B'}, {'B', 'C'}, {'A', 'B', 'D'}, {'B', 'D'} ] # 调用 Apriori 算法函数 frequent_itemsets = # 输出频繁项集 for itemset in frequent_itemsets: print(itemset)
这段代码实现了 Apriori 算法,用于挖掘频繁项集。Apriori 算法是一种常用的数据挖掘算法,用于发现数据集中频繁出现的项集。该算法通过迭代的方式不断生成候选项集,并统计每个候选项集在数据集中出现的次数,最终得到频繁项集。
在这段代码中,generate_candidates 函数用于生成长度为 k 的候选项集,apriori 函数则是主函数,用于实现 Apriori 算法的迭代过程。具体来说,算法先通过遍历所有数据集,生成所有单个项的候选项集,然后依次生成所有长度为 k 的候选项集,并通过计算支持度,得到所有频繁项集。最后,算法输出所有频繁项集。
如果您有任何问题或需要进一步的解释,请随时问我。
import pandas as pd from itertools import combinations # 读取数据集 data = pd.read_csv('groceries.csv', header=None) transactions = data.values.tolist() # 设定支持度和置信度的阈值 min_support = 0.01 min_confidence = 0.5 # 生成频繁1项集 item_count = {} for transaction in transactions: for item in transaction: if item in item_count: item_count[item] += 1 else: item_count[item] = 1 num_transactions = len(transactions) freq_1_itemsets = [] for item, count in item_count.items(): support = count / num_transactions if support >= min_support: freq_1_itemsets.append([item]) # 生成频繁项集和关联规则 freq_itemsets = freq_1_itemsets[:] for k in range(2, len(freq_1_itemsets) + 1): candidates = [] for itemset in freq_itemsets: for item in freq_1_itemsets: if item[0] not in itemset: candidate = itemset + item if candidate not in candidates: candidates.append(candidate) freq_itemsets_k = [] for candidate in candidates: count = 0 for transaction in transactions: if set(candidate).issubset(set(transaction)): count += 1 support = count / num_transactions if support >= min_support: freq_itemsets_k.append(candidate) freq_itemsets += freq_itemsets_k # 生成关联规则 for itemset in freq_itemsets_k: for i in range(1, len(itemset)): for subset in combinations(itemset, i): antecedent = list(subset) consequent = list(set(itemset) - set(subset)) support_antecedent = item_count[antecedent[0]] / num_transactions for item in antecedent[1:]: support_antecedent = min(support_antecedent, item_count[item] / num_transactions) confidence = count / (support_antecedent * num_transactions) if confidence >= min_confidence: print(antecedent, '->', consequent, ':', confidence)完善这段代码
这这是这是Python这是Python的这是Python的代码这是Python的代码,这是Python的代码,用这是Python的代码,用于这是Python的代码,用于导这是Python的代码,用于导入这是Python的代码,用于导入p这是Python的代码,用于导入pandas这是Python的代码,用于导入pandas库这是Python的代码,用于导入pandas库,并这是Python的代码,用于导入pandas库,并从这是Python的代码,用于导入pandas库,并从it这是Python的代码,用于导入pandas库,并从itertools这是Python的代码,用于导入pandas库,并从itertools库这是Python的代码,用于导入pandas库,并从itertools库中这是Python的代码,用于导入pandas库,并从itertools库中导这是Python的代码,用于导入pandas库,并从itertools库中导入这是Python的代码,用于导入pandas库,并从itertools库中导入com这是Python的代码,用于导入pandas库,并从itertools库中导入combinations这是Python的代码,用于导入pandas库,并从itertools库中导入combinations函数这是Python的代码,用于导入pandas库,并从itertools库中导入combinations函数。
阅读全文