x_1 = F.dropout(x_1, self.dropout, training=self.training)这里的 self.dropout是什么参数
时间: 2024-05-28 13:14:18 浏览: 116
在深度学习中,为了避免过拟合,我们经常会在模型训练的过程中对某些层进行随机失活(Dropout)操作。这个操作的本质是在每次训练时,随机让一部分神经元的输出值为0,从而减少了神经元之间的相互依赖性,使得模型更加鲁棒,泛化能力更强。
在上述代码中,`self.dropout`是一个超参数,表示要随机失活的神经元的比例。在训练模型时,`training`参数用于指示是否处于训练模式,如果是,则进行随机失活操作。如果是测试模式,则不会进行随机失活操作,因为此时需要用到所有神经元的输出。
相关问题
class DoubleFastRCNNOutputLayers(nn.Module): def __init__( self, cfg, input_size, num_classes, cls_agnostic_bbox_reg, box_dim=4 ): super(DoubleFastRCNNOutputLayers, self).__init__() if not isinstance(input_size, int): input_size = np.prod(input_size) self.cls_score = nn.Linear(input_size, num_classes + 1) num_bbox_reg_classes = 1 if cls_agnostic_bbox_reg else num_classes self.bbox_pred = nn.Linear(input_size, num_bbox_reg_classes * box_dim) nn.init.normal_(self.cls_score.weight, std=0.01) nn.init.normal_(self.bbox_pred.weight, std=0.001) for l in [self.cls_score, self.bbox_pred]: nn.init.constant_(l.bias, 0) self._do_cls_dropout = cfg.MODEL.ROI_HEADS.CLS_DROPOUT self._dropout_ratio = cfg.MODEL.ROI_HEADS.DROPOUT_RATIO def forward(self, x_s, x_l): if x_s.dim() > 2: x_s = torch.flatten(x_s, start_dim=1) if x_l.dim() > 2: x_l = torch.flatten(x_l, start_dim=1) proposal_deltas = self.bbox_pred(x_l) if self._do_cls_dropout: x_s = F.dropout(x_s, self._dropout_ratio, training=self.training) scores = self.cls_score(x_s) return scores, proposal_deltas
这段代码是一个双输入的Fast R-CNN输出层的实现,其中包括一个分类得分层和一个边界框回归层。它接受两个输入x_s和x_l,分别代表短边和长边的特征。在前向传播时,它首先对输入进行扁平化处理,然后通过bbox_pred层获得边界框预测值,通过cls_score层获得分类得分。在进行分类得分的计算时,可以进行dropout操作来防止过拟合。最终,返回分类得分和边界框预测值。
x, _ = F.multi_head_attention_forward( query=x, key=x, value=x, embed_dim_to_check=x.shape[-1], num_heads=self.num_heads, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight, in_proj_weight=None, in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), bias_k=None, bias_v=None, add_zero_attn=False, dropout_p=0, out_proj_weight=self.c_proj.weight, out_proj_bias=self.c_proj.bias, use_separate_proj_weight=True, training=self.training, need_weights=False )
这段代码是一个多头注意力机制的前向传播实现,输入的是查询(query)、键(key)和值(value)的张量x,以及一些权重参数和超参数。在多头注意力机制中,将x分别进行线性变换并分成多个头,然后对每个头进行单独的注意力计算,并将计算结果在最后进行线性变换得到最终输出。这段代码中的参数设置和调用方式与PyTorch的API有些相似,但具体实现可能与PyTorch的实现略有不同。
阅读全文