tf.shape转pytorch版本
时间: 2023-07-04 09:24:43 浏览: 112
在 PyTorch 中,可以使用 `tensor.shape` 或 `tensor.size()` 方法来获取张量的形状。这两个方法返回的都是一个元组,表示张量在每个维度上的大小。例如,获取一个 4x3x2 的张量的形状可以使用以下代码:
```python
import torch
tensor = torch.randn(4, 3, 2)
shape = tensor.shape # 或者使用 size() 方法,如:shape = tensor.size()
print(shape) # 输出 (4, 3, 2)
```
需要注意的是,PyTorch 中的形状是一个元组,而不是张量本身的属性,因此不能使用类似 TensorFlow 的 `tf.shape()` 方法来获取形状。
相关问题
convert tf.reshape to pytorch
To convert `tf.reshape` to PyTorch, you can use the `view` method in PyTorch. Here's an example:
```python
# TensorFlow code:
import tensorflow as tf
x = tf.constant([[1, 2], [3, 4], [5, 6]])
y = tf.reshape(x, [2, 3])
# PyTorch equivalent:
import torch
x = torch.tensor([[1, 2], [3, 4], [5, 6]])
y = x.view(2, 3)
```
In this example, `x` is a 3x2 tensor, and `y` is the reshaped tensor with shape 2x3. The `view` method in PyTorch works similarly to `tf.reshape` in TensorFlow.
import tensorflow as tf from tensorflow.keras import optimizers, layers, Model class linearModel(Model): def __init__(self, ndim): super(linearModel, self).__init__() self.w = tf.Variable( shape=[ndim, 1], initial_value=tf.random.uniform( [ndim,1], minval=-0.1, maxval=0.1, dtype=tf.float32)) @tf.function def call(self, x): y = tf.squeeze(tf.matmul(x, self.w), axis=1) return y (xs, ys), (o_x, o_y) = load_data('train.txt') ndim = xs.shape[1] model = linearModel(ndim=ndim) 将上述代码的tensflow框架改为pytorch框架,并能在jupyter上运行
import torch
import torch.nn as nn
import torch.optim as optim
class LinearModel(nn.Module):
def __init__(self, ndim):
super(LinearModel, self).__init__()
self.w = nn.Parameter(torch.rand(ndim, 1) * 0.2 - 0.1)
def forward(self, x):
y = torch.mm(x, self.w).squeeze(dim=1)
return y
def load_data(file_path):
# 加载数据的代码请自行实现
pass
# 加载数据
(xs, ys), (o_x, o_y) = load_data('train.txt')
ndim = xs.shape[1]
# 定义模型、损失函数和优化器
model = LinearModel(ndim=ndim)
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
# 训练模型
for epoch in range(1000):
optimizer.zero_grad()
y_pred = model(xs)
loss = criterion(y_pred, ys)
loss.backward()
optimizer.step()
if epoch % 100 == 0:
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, 1000, loss.item()))
# 测试模型
with torch.no_grad():
y_test = model(o_x)
test_loss = criterion(y_test, o_y)
print('Test Loss: {:.4f}'.format(test_loss.item()))
阅读全文