这是干嘛的 void lcd_init()//***液晶初始化函数**** { write_1602com(0x38);//设置液晶工作模式,意思:16*2行显示,5*7点阵,8位数据 write_1602com(0x0c);//开显示不显示光标 write_1602com(0x06);//整屏不移动,光标自动右移 write_1602com(0x01);//清显示 write_1602com(yh+1);//日历显示固定符号从第一行第1个位置之后开始显示 for(a=0;a<14;a++) { write_1602dat(tab1[a]);//向液晶屏写日历显示的固定符号部分 //delay(3); } write_1602com(er);//时间显示固定符号写入位置,从第2个位置后开始显示 for(a=0;a<8;a++) { write_1602dat(tab2[a]);//写显示时间固定符号,两个冒号 } }

时间: 2024-04-22 12:27:41 浏览: 16
这段代码是一个液晶屏幕初始化函数。该函数通过调用write_1602com()和write_1602dat()函数,向液晶屏幕写入一系列的指令和数据,以实现对液晶屏幕的初始化设置和显示内容的设置。具体来说,该函数的实现过程包括以下几个步骤: 1. 设置液晶工作模式:通过调用write_1602com()函数,向液晶屏幕写入0x38指令,设置液晶工作模式为16*2行显示,5*7点阵,8位数据。 2. 开显示不显示光标:通过调用write_1602com()函数,向液晶屏幕写入0x0c指令,设置开显示不显示光标。 3. 整屏不移动,光标自动右移:通过调用write_1602com()函数,向液晶屏幕写入0x06指令,设置整屏不移动,光标自动右移。 4. 清显示:通过调用write_1602com()函数,向液晶屏幕写入0x01指令,清除屏幕显示内容。 5. 日历显示固定符号从第一行第1个位置之后开始显示:通过调用write_1602com()函数,向液晶屏幕写入yh+1指令,设置日历显示固定符号的显示位置。然后通过循环向液晶屏幕写入tab1数组中的数据,实现日历显示固定符号的显示。 6. 时间显示固定符号写入位置,从第2个位置后开始显示:通过调用write_1602com()函数,向液晶屏幕写入er指令,设置时间显示固定符号的显示位置。然后通过循环向液晶屏幕写入tab2数组中的数据,实现时间显示固定符号的显示。 该函数常用于程序初始化阶段,以便向液晶屏幕设置合适的工作模式和显示内容。
相关问题

void LCD_Init(void) { LCD_Write_Com(0x38); /*显示模式设置*/ DelayMs(5); LCD_Write_Com(0x38); DelayMs(5); LCD_Write_Com(0x38); DelayMs(5); LCD_Write_Com(0x38); LCD_Write_Com(0x08); /*显示关闭*/ LCD_Write_Com(0x01); /*显示清屏*/ LCD_Write_Com(0x06); /*显示光标移动设置*/ DelayMs(5); LCD_Write_Com(0x0C); /*显示开及光标设置*/ } void InitUART (void) { SCON = 0x50; // SCON: 模式 1, 8-bit UART, 使能接收 TMOD |= 0x20; // TMOD: timer 1, mode 2, 8-bit 重装 TH1 = 0xFD; // TH1: 重装值 9600 波特率 晶振 11.0592MHz TR1 = 1; // TR1: timer 1 打开 EA = 1; //打开总中断 ES = 1; //打开串口中断 }

这段代码是在初始化 LCD 和 UART 的函数。其中 LCD_Init 函数用于初始化 LCD 屏幕,而 InitUART 函数用于初始化串口通信。 在 LCD_Init 函数中,通过向 LCD_Write_Com 函数传递不同的命令字,来设置显示模式、关闭显示、清屏、光标移动设置和显示开及光标设置等参数。同时,通过调用 DelayMs 函数来产生延时,以确保命令执行成功。 在 InitUART 函数中,通过设置 SCON 和 TMOD 寄存器来配置串口通信模式和定时器模式。然后设置波特率为 9600,以适应常用的串口通信速率。最后打开总中断和串口中断,以响应串口通信事件。

帮我详细解释每行代码的意义及作用#ifndef _NET_WRITE_X_H_ #define _NET_WRITE_X_H_ #include "sources/utility/typeLib/App_TypeDefine.h" #include "sources/comps/SIO_NET/cc/net_write_x/CANPub_W_x/_net_write_canpub_x.h" // #include "sources/comps/SIO_NET/cc/net_write_x/CANPri_W_x/net_write_canpri_x.h" #define SEND_INIT_COUNT_UB ((UB)5) namespace sio_net { class net_write_x { public: // default construct net_write_x(VOID); virtual ~net_write_x( VOID ) noexcept { } public: VOID net_write_x_Init_V( VOID ); VOID net_write_x_Main_T10_V( VOID ); UB m_sendInitValue_ub; protected: private: net_write_canpub_x m_write_canpub_x; // net_write_canpri_x m_write_canpri_x; }; } // end namespace #endif

这段代码是C++代码,主要是定义了一个名为net_write_x的类,该类实现了网络数据的写入操作。下面逐行解释每一行代码的意义和作用: 1. #ifndef _NET_WRITE_X_H_ #ifndef指令用于条件编译,判断_NET_WRITE_X_H_宏是否被定义。如果没有被定义,就执行下面的代码,否则直接跳过。 2. #define _NET_WRITE_X_H_ 定义_NET_WRITE_X_H_宏,防止头文件被重复包含。 3. #include "sources/utility/typeLib/App_TypeDefine.h" 包含一个头文件,该头文件定义了一些常用的数据类型和宏定义。 4. #include "sources/comps/SIO_NET/cc/net_write_x/CANPub_W_x/_net_write_canpub_x.h" 包含另一个头文件,该头文件定义了一个名为net_write_canpub_x的类,用于实现CAN总线的数据发送操作。 5. // #include "sources/comps/SIO_NET/cc/net_write_x/CANPri_W_x/net_write_canpri_x.h" 注释掉的代码,本来是用于实现CAN总线的数据接收操作,现在没有用到,所以被注释掉了。 6. #define SEND_INIT_COUNT_UB ((UB)5) 定义一个名为SEND_INIT_COUNT_UB的宏,表示发送数据的初始计数值为5。 7. namespace sio_net { 定义一个名为sio_net的命名空间,用于包含net_write_x类。 8. class net_write_x { 定义一个名为net_write_x的类。 9. public: 表示接下来的成员函数和成员变量都是公有的,可以被该类的对象或其他对象直接访问。 10. net_write_x(VOID); 构造函数,用于创建net_write_x的对象。 11. virtual ~net_write_x( VOID ) noexcept 析构函数,用于销毁net_write_x对象。 12. VOID net_write_x_Init_V( VOID ); 成员函数,用于初始化net_write_x对象。 13. VOID net_write_x_Main_T10_V( VOID ); 成员函数,用于实现net_write_x的主要数据发送操作。 14. UB m_sendInitValue_ub; 表示发送数据的初始计数值。 15. protected: 表示接下来的成员函数和成员变量都是受保护的,只能被该类或其子类访问。 16. private: 表示接下来的成员函数和成员变量都是私有的,只能被该类访问。 17. net_write_canpub_x m_write_canpub_x; net_write_canpub_x类型的对象m_write_canpub_x,用于实现CAN总线的数据发送操作。 18. } // end class 19. } // end namespace 结束命名空间和类的定义。 20. #endif 条件编译结束。

相关推荐

#include <reg52.h> #include <stdio.h> #define LCD1602_RS P2_0 // LCD1602?RS?? #define LCD1602_RW P2_1 // LCD1602?RW?? #define LCD1602_EN P2_2 // LCD1602?EN?? #define LCD1602_DATAPINS P0 // LCD1602????? sbit UART_RXD = P3^0; // ?????? sbit UART_TXD = P3^1; // ?????? void init_uart() // ????? { TMOD |= 0x20; // ?????1???2 TH1 = 0xfd; // ??????9600 TL1 = 0xfd; TR1 = 1; // ?????1 SCON = 0x50; // ???????1 ES = 1; // ?????? EA = 1; // ????? } void init_lcd() // ???LCD { LCD1602_RS = 0; LCD1602_RW = 0; LCD1602_EN = 0; delay_ms(15); lcd_write_cmd(0x38); // ??LCD?16x2????? delay_ms(5); lcd_write_cmd(0x0c); // ??LCD?? delay_ms(5); lcd_clear(); // ?? lcd_write_cmd(0x06); // ???????? } void lcd_write_cmd(unsigned char cmd) // ????LCD { LCD1602_RS = 0; LCD1602_DATAPINS = cmd; LCD1602_EN = 1; delay_us(2); LCD1602_EN = 0; delay_ms(1); } void lcd_write_data(unsigned char dat) // ????LCD { LCD1602_RS = 1; LCD1602_DATAPINS = dat; LCD1602_EN = 1; delay_us(2); LCD1602_EN = 0; delay_ms(1); } void lcd_clear() // ?? { lcd_write_cmd(0x01); } void lcd_set_cursor(unsigned char x, unsigned char y) // ?????? { unsigned char addr; if (y == 0) addr = 0x80 + x; else addr = 0xc0 + x; lcd_write_cmd(addr); } void lcd_puts(unsigned char x, unsigned char y, unsigned char *str) // ?????????? { lcd_set_cursor(x, y); while (*str != '\0') { lcd_write_data(*str); str++; } } void uart_isr() interrupt 4 // ???????? { if (RI) { RI = 0; lcd_write_data(SBUF); // ?????????LCD? } } void main() { init_uart(); init_lcd(); while (1); }

#include<reg52.h> #include<intrins.h> #define LCD1602_DB P0 sbit LCD1602_RS=P2^0; sbit LCD1602_RW=P2^1; sbit LCD1602_E=P2^2; unsigned int frq;//定义频率变量 unsigned char frq_display[5];//定义频率显示数组 void delay(unsigned int x);//延时函数 void write_com(unsigned char com);//写入指令函数 void write_data(unsigned char date);//写入数据函数 void init_lcd1602();//初始化LCD函数 void display(unsigned char *p);//显示函数 void measure();//测量频率函数 void main() { init_lcd1602();//初始化LCD1602 while(1) { measure();//测量频率 display(frq_display);//显示频率 } } void delay(unsigned int x)//延时函数 { unsigned int i,j; for(i=x;i>0;i--) { for(j=110;j>0;j--); } } void write_com(unsigned char com)//写入指令函数 { LCD1602_RS=0; LCD1602_RW=0; LCD1602_DB=com; LCD1602_E=1; _nop_(); _nop_(); LCD1602_E=0; } void write_data(unsigned char date)//写入数据函数 { LCD1602_RS=1; LCD1602_RW=0; LCD1602_DB=date; LCD1602_E=1; _nop_(); _nop_(); LCD1602_E=0; } void init_lcd1602()//初始化LCD函数 { write_com(0x38);//设置16*2显示,5*7点阵,8位数据接口 write_com(0x0c);//开显示,关光标,不闪烁 write_com(0x06);//读写指针自动加1,不移动屏幕 write_com(0x01);//清屏 write_com(0x80);//设置显示起始地址 } void display(unsigned char *p)//显示函数 { write_com(0x80);//设置显示起始地址 while(*p!='\0') { write_data(*p++); } } void measure()//测量频率函数 { unsigned long cnt=0; TMOD=0x01;//设置计时器0为16位计数模式 TH0=0; TL0=0; TR0=1;//计时器0开始计数 while(TF0==0);//等待计时器0溢出 TR0=0;//计时器0停止计数 cnt=TH0*256+TL0;//获取计时器0的计数值 frq=11059200/cnt;//计算频率值 sprintf(frq_display,"%4uhz",frq);//将频率值转换成字符串 TF0=0;//清除计时器0溢出标志 }

#define uchar unsigned char #define uint unsigned int sbit RS = P2^5;//数据/命令 sbit RW = P2^6;//读/写 sbit E = P2^7;//使能 uchar num[] = {"0123456789"}; void delayus(uint x) //延时函数 { while(x--); } void write_com(uchar com)//写命令 { RW = 0; RS = 0; E = 1; P0 = com; delayus(100); E = 0; } void write_data(uchar da)//写入数据 { RW = 0; RS = 1; E = 1; P0 = da; delayus(100); E = 0; } void init_1602() //LCD1602 初始化 { write_com(0x3c);//设定数据总线的个数4/8,显示一行/两行 write_com(0x0c);// //光标不显示 write_com(0x06);// //光标随字符右移 } void LCD_clr1602() //LCD1602 清屏 { write_com(0x01); // 对字符串清0 write_com(0x02); //对光标清0 } void goto_xy(uchar y,uchar x) //定位显示位置 { if(y == 1) write_com(x + 0x80); //定位第一行 else write_com(x + 0x80 + 0x40); //定位第二行 } void display_num(unsigned char x) //显示数字 { write_data(num[x / 10%10]); write_data(num[x % 10]); } void display_num1(unsigned int x) //显示数字 { write_data(num[x / 100 % 10]); write_data(num[x / 10 % 10]); write_data(num[x % 10]); } void display_string(uchar *p) //显示字符 { while(*p) { write_data(*p); p++; } } void display_xnum2(float x) //显示数字 { uint y,x1; y = (int)x; write_data(num[y / 10]); write_data(num[y % 10]); x1 = (int)((x -(float)y)*1000); display_string("."); write_data(num[x1 / 100 % 10]); // write_data(num[x1 / 10 % 10]); // write_data(num[x1 % 10]); } void display_xnum1(float x) //显示数字 { uint y,x1; y = (int)x; write_data(num[y / 10%10]); write_data(num[y % 10]); x1 = (int)((x -(float)y)*1000); display_string("."); write_data(num[x1 / 100 % 10]); }

#define DEVICE_NAME "BL618_GATT" // 设备名称 #define PROFILE_NUM 1 // 设备支持的服务数量 #define PROFILE_A_APP_ID 0 // 第一个服务的ID static void gap_event_handler(ble_event_t *event) { // 处理 GAP 事件 } static void gatt_event_handler(ble_event_t *event) { // 处理 GATT 事件 } int main(void) { // 初始化蓝牙协议栈 bluetooth_init(gap_event_handler, gatt_event_handler); // 设置设备名称 bluetooth_set_device_name(DEVICE_NAME); // 创建一个服务 bluetooth_gatt_create_service(PROFILE_NUM); // 添加服务的特征值 bluetooth_gatt_add_char(PROFILE_A_APP_ID, "CHAR_A", 0xFF01, 0x20, NULL); // 开始广播 bluetooth_start_advertising(); while (1) { // 等待事件 bluetooth_wait_for_event(); } return 0; static void gap_event_handler(ble_event_t *event) { switch (event->type) { case BLE_GAP_EVENT_ADV_IND: { // 收到广播包,可以连接该设备 ble_gap_connect(&event->gap_event.adv_ind.address); break; } case BLE_GAP_EVENT_CONNECTED: { // 连接成功,可以开始 GATT 操作 break; } case BLE_GAP_EVENT_DISCONNECTED: { // 断开连接,重新开始广播 bluetooth_start_advertising(); break; } default: break; } } static void gatt_event_handler(ble_event_t *event) { switch (event->type) { case BLE_GATT_EVENT_READ: { // 处理读操作 break; } case BLE_GATT_EVENT_WRITE: { // 处理写操作 ble_gatt_server_send_indication(event->conn_handle, 0x1234, raw_data, sizeof(raw_data)); // 发送通知给主机 break; } default: break; } } } }优化

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

已知自动控制原理中通过更高的频率特征来评估切割频率和库存——相位稳定。确定封闭系统的稳定性。求Wcp 和ψ已知W(p)=30•(0.1p+1)•(12.5p+1)/p•(10p+1)•(0.2p+1)•(p+1)

根据相位稳定的定义,我们需要找到一个频率 Wcp,使得相位满足 -ψ = -180°,即 ψ = 180°。此时系统的相位裕度为 0°,系统处于边缘稳定状态。 首先,我们需要将 W(p) 表示成极点和零点的形式。将分母和分子分别因式分解,得到: W(p) = 30 • (0.1p+1) • (12.5p+1) / [p • (10p+1) • (0.2p+1) • (p+1)] = 375p/(p+1) - 3750/(10p+1) + 750p/(0.2p+1) - 3750p/(10p+1) + 150p/(p+1) + 30 因此,系统的极点为 -1、-0.1、-0.2、
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩