assert len(x.shape) == 2
时间: 2023-02-05 07:25:03 浏览: 184
断言语句是一种在程序执行过程中用来检测程序是否按预期工作的工具。如果断言的条件为真,那么程序继续执行;如果断言的条件为假,则程序会停止并抛出 AssertionError 异常。
因此,上述断言语句的意思是:如果 x 的形状不是二维数组(即 len(x.shape) != 2),则抛出 AssertionError 异常。
关于 x.shape 的更多信息:
- shape 是一个属性,可以用来查询数组的形状。例如,如果 x 是一个二维数组,那么 x.shape 将返回一个包含两个数字的元组,分别表示 x 的行数和列数。
- len() 函数是 Python 中的内置函数,可以用来查询序列的长度。例如,如果 x.shape 是一个包含两个数字的元组,那么 len(x.shape) 将返回 2。
相关问题
def out_to_rgb(out,PALETTE,CLASSES): palette = np.array(PALETTE) assert palette.shape[0] == len(CLASSES) assert palette.shape[1] == 3 assert len(palette.shape) == 2 color_seg = np.zeros((out.shape[0], out.shape[1], 3), dtype=np.uint8) for label, color in enumerate(palette): color_seg[out == label, :] = color tran=transforms.ToTensor() color_seg=tran(color_seg) return color_seg def out_to_rgb_np(out,PALETTE,CLASSES): palette = np.array(PALETTE) assert palette.shape[0] == len(CLASSES) assert palette.shape[1] == 3 assert len(palette.shape) == 2 color_seg = np.zeros((out.shape[0], out.shape[1], 3), dtype=np.uint8) for label, color in enumerate(palette): color_seg[out == label, :] = color return color_seg逐句解释
这段代码定义了两个函数,都是用于将一个模型输出的标签图像转换为 RGB 彩色图像。
- `def out_to_rgb(out,PALETTE,CLASSES):`:定义了一个名为 out_to_rgb 的函数,接受三个参数:out 表示模型输出的标签图像,PALETTE 表示颜色调色板,CLASSES 表示类别列表。
- `palette = np.array(PALETTE)`:将 PALETTE 转换为 numpy 数组,并将其赋值给变量 palette。
- `assert palette.shape[0] == len(CLASSES)`:断言 PALETTE 中的行数与 CLASSES 的长度相等,即每个类别对应了一种颜色。
- `assert palette.shape[1] == 3`:断言 PALETTE 中每个颜色由三个通道组成,即为 RGB 格式。
- `assert len(palette.shape) == 2`:断言 PALETTE 是一个二维数组。
- `color_seg = np.zeros((out.shape[0], out.shape[1], 3), dtype=np.uint8)`:创建一个 shape 为 (out.shape[0], out.shape[1], 3) 的全 0 numpy 数组,用于存储转换后的 RGB 彩色图像。
- `for label, color in enumerate(palette):`:遍历颜色调色板 PALETTE,获取每种颜色以及其对应的标签值。
- `color_seg[out == label, :] = color`:将标签图像中值为 label 的像素的 RGB 值赋为 color。
- `tran=transforms.ToTensor()`:创建一个 torchvision.transforms.ToTensor() 的实例,用于将 numpy 数组转换为 torch.Tensor。
- `color_seg=tran(color_seg)`:将经过转换后的 numpy 数组 color_seg 转换为 torch.Tensor,并将其赋值给变量 color_seg。
- `return color_seg`:返回转换后的 RGB 彩色图像,类型为 torch.Tensor。
- `def out_to_rgb_np(out,PALETTE,CLASSES):`:定义了一个名为 out_to_rgb_np 的函数,与 out_to_rgb 函数的实现基本相同,只是最后直接返回 numpy 数组类型的 RGB 彩色图像。
import numpy as np import sys from torchvision import transforms sys.path.append("..") def out_to_rgb(out,PALETTE,CLASSES): palette = np.array(PALETTE) assert palette.shape[0] == len(CLASSES) assert palette.shape[1] == 3 assert len(palette.shape) == 2 color_seg = np.zeros((out.shape[0], out.shape[1], 3), dtype=np.uint8) for label, color in enumerate(palette): color_seg[out == label, :] = color tran=transforms.ToTensor() color_seg=tran(color_seg) return color_seg def out_to_rgb_np(out,PALETTE,CLASSES): palette = np.array(PALETTE) assert palette.shape[0] == len(CLASSES) assert palette.shape[1] == 3 assert len(palette.shape) == 2 color_seg = np.zeros((out.shape[0], out.shape[1], 3), dtype=np.uint8) for label, color in enumerate(palette): color_seg[out == label, :] = color return color_seg
这段代码看起来是一个图像分割的函数,输入是一个经过模型预测得到的标签图像 out,以及 PALETTE 和 CLASSES 两个参数,PALETTE 是一个颜色调色板,每个类别都对应一种颜色;CLASSES 是一个类别列表,每个元素对应一个类别。输出是一个 RGB 图像,其中每个像素的颜色根据其对应的类别在 PALETTE 中取得。
其中 out_to_rgb_np 函数是不使用 torchvision.transforms.ToTensor 转换的版本,返回的是 numpy 数组类型的 RGB 图像。而 out_to_rgb 函数则是使用了 ToTensor 转换,返回的是 torch.Tensor 类型的 RGB 图像。
阅读全文