生成torch代码:class ConcreteAutoencoderFeatureSelector(): def __init__(self, K, output_function, num_epochs=300, batch_size=None, learning_rate=0.001, start_temp=10.0, min_temp=0.1, tryout_limit=1): self.K = K self.output_function = output_function self.num_epochs = num_epochs self.batch_size = batch_size self.learning_rate = learning_rate self.start_temp = start_temp self.min_temp = min_temp self.tryout_limit = tryout_limit def fit(self, X, Y=None, val_X=None, val_Y=None): if Y is None: Y = X assert len(X) == len(Y) validation_data = None if val_X is not None and val_Y is not None: assert len(val_X) == len(val_Y) validation_data = (val_X, val_Y) if self.batch_size is None: self.batch_size = max(len(X) // 256, 16) num_epochs = self.num_epochs steps_per_epoch = (len(X) + self.batch_size - 1) // self.batch_size for i in range(self.tryout_limit): K.set_learning_phase(1) inputs = Input(shape=X.shape[1:]) alpha = math.exp(math.log(self.min_temp / self.start_temp) / (num_epochs * steps_per_epoch)) self.concrete_select = ConcreteSelect(self.K, self.start_temp, self.min_temp, alpha, name='concrete_select') selected_features = self.concrete_select(inputs) outputs = self.output_function(selected_features) self.model = Model(inputs, outputs) self.model.compile(Adam(self.learning_rate), loss='mean_squared_error') print(self.model.summary()) stopper_callback = StopperCallback() hist = self.model.fit(X, Y, self.batch_size, num_epochs, verbose=1, callbacks=[stopper_callback], validation_data=validation_data) # , validation_freq = 10) if K.get_value(K.mean( K.max(K.softmax(self.concrete_select.logits, axis=-1)))) >= stopper_callback.mean_max_target: break num_epochs *= 2 self.probabilities = K.get_value(K.softmax(self.model.get_layer('concrete_select').logits)) self.indices = K.get_value(K.argmax(self.model.get_layer('concrete_select').logits)) return self def get_indices(self): return K.get_value(K.argmax(self.model.get_layer('concrete_select').logits)) def get_mask(self): return K.get_value(K.sum(K.one_hot(K.argmax(self.model.get_layer('concrete_select').logits), self.model.get_layer('concrete_select').logits.shape[1]), axis=0)) def transform(self, X): return X[self.get_indices()] def fit_transform(self, X, y): self.fit(X, y) return self.transform(X) def get_support(self, indices=False): return self.get_indices() if indices else self.get_mask() def get_params(self): return self.model

时间: 2023-06-08 19:04:50 浏览: 83
这段代码定义了一个名为"ConcreteAutoencoderFeatureSelector"的类,它有几个参数,包括:K(特征数目),output_function(输出函数),num_epochs(迭代次数),batch_size(批大小),learning_rate(学习率),start_temp(开始温度),min_temp(最小温度),tryout_limit(尝试次数)。 fit()函数用于训练模型。如果不提供Y,则默认使用X。如果提供了val_X和val_Y,那么还会对模型进行验证。该函数将检查X和Y是否具有相同的长度,并通过步骤计算每个迭代周期的步骤数。然后使用concrete_select函数对数据进行特征选择,最后训练模型并输出总结。模型将使用Adam优化器,并计算均方误差进行损失。最后,将使用StopperCallback回调停止模型的训练。
相关问题

class ARMA4NC(nn.Module): def __init__(self, in_dim, hid_dim, out_dim, num_stacks, num_layers, activation=None, dropout=0.0): super(ARMA4NC, self).__init__() self.conv1 = ARMAConv(in_dim=in_dim, out_dim=hid_dim, num_stacks=num_stacks, num_layers=num_layers, activation=activation, dropout=dropout) self.conv2 = ARMAConv(in_dim=hid_dim, out_dim=out_dim, num_stacks=num_stacks, num_layers=num_layers, activation=activation, dropout=dropout) self.dropout = nn.Dropout(p=dropout) def forward(self, g, feats): feats = F.relu(self.conv1(g, feats)) feats = self.dropout(feats) feats = self.conv2(g, feats) return feats。写出对这个进行训练的代码

以下是一个示例训练代码,包括定义损失函数、优化器,以及数据加载器和训练循环: ```python import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader # Define the loss function criterion = nn.CrossEntropyLoss() # Define the optimizer optimizer = optim.Adam(model.parameters(), lr=0.01) # Create a DataLoader for the training data train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True) # Train the model for epoch in range(num_epochs): for batch_idx, (g, feats, labels) in enumerate(train_loader): # Zero the gradients optimizer.zero_grad() # Forward pass output = model(g, feats) loss = criterion(output, labels) # Backward pass and optimization step loss.backward() optimizer.step() # Print progress if batch_idx % log_interval == 0: print('Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(g), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) ``` 在此示例中,`train_dataset` 是一个包含图形、特征和标签的数据集,`log_interval` 是打印日志的间隔(例如每100个批次)。在训练过程中,每个批次的图形、特征和标签被加载到 `g`、`feats` 和 `labels` 变量中,分别表示图形、特征和标签的张量。在每个批次中,模型的输出和损失都被计算,并且通过反向传播和优化器进行了更新。最后,训练循环打印进度并在每个日志间隔时输出当前损失。

给出class-agnostic模块作用于faster_RCNN目标检测的pytorch训练示例代码,并给出注释

以下是class-agnostic模块作用于faster_RCNN目标检测的PyTorch训练示例代码,注释已经加入到代码中: ``` python import torch import torchvision from torchvision.models.detection.faster_rcnn import FastRCNNPredictor from torchvision.models.detection.mask_rcnn import MaskRCNNPredictor # load a pre-trained model for classification and return only the features backbone = torchvision.models.mobilenet_v2(pretrained=True).features # FasterRCNN needs to know the number of output channels in a backbone. # For mobilenet_v2, it's 1280, so we need to add it here backbone.out_channels = 1280 # let's make the RPN generate 5 x 3 anchors per spatial location, with 5 different sizes and 3 different aspect ratios. # We have a Tuple[Tuple[int]] because each feature map could potentially have different sizes and aspect ratios # (e.g., if your backbone produces a few feature maps of different sizes). anchor_generator = torchvision.models.detection.rpn.AnchorGenerator(sizes=((32, 64, 128, 256, 512),), aspect_ratios=((0.5, 1.0, 2.0),)) # let's define what are the feature maps that we will use to perform the region of interest cropping, # as well as the size of the crop after rescaling. # if your backbone returns a Tensor, featmap_names needs to be ['0']. More generally, the backbone should return an # OrderedDict[Tensor], and in featmap_names you can choose which feature maps to use. roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=['0'], output_size=7, sampling_ratio=2) # put the pieces together inside a FasterRCNN model model = torchvision.models.detection.FasterRCNN(backbone, num_classes=2, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler) # define a class-agnostic module class ClassAgnosticModule(torch.nn.Module): def __init__(self, in_channels, num_classes): super().__init__() self.conv = torch.nn.Conv2d(in_channels, num_classes, kernel_size=1, stride=1, padding=0) def forward(self, x): # pass through the 1x1 convolution layer x = self.conv(x) # flatten the tensor x = x.flatten(start_dim=2) # apply softmax to get the class probabilities x = torch.nn.functional.softmax(x, dim=1) # reshape the tensor to match the output shape of the FasterRCNN model num_boxes = x.shape[1] x = x.reshape(-1, num_boxes, num_classes) return x # replace the FastRCNNPredictor with the ClassAgnosticModule in_channels = model.roi_heads.box_predictor.cls_score.in_features num_classes = 2 model.roi_heads.box_predictor = ClassAgnosticModule(in_channels, num_classes) # define the loss function def loss_fn(preds, targets): return torch.nn.functional.cross_entropy(preds.squeeze(), targets) # define the optimizer optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # define the data loader data_loader = torch.utils.data.DataLoader(dataset, batch_size=4, shuffle=True) # train the model for epoch in range(num_epochs): for images, targets in data_loader: # move the images and targets to the device images = list(image.to(device) for image in images) targets = [{k: v.to(device) for k, v in t.items()} for t in targets] # forward pass preds = model(images, targets) # compute the loss loss_dict = preds['losses'] losses = sum(loss_dict.values()) # backward pass optimizer.zero_grad() losses.backward() optimizer.step() ``` 该示例代码中,我们首先加载了一个预训练的分类模型,并删去了分类层。然后,我们定义了一个class-agnostic模块,并将FastRCNNPredictor替换为该模块。模型的其余部分与标准的FasterRCNN模型相同。最后,我们定义了一个损失函数和一个优化器,并使用数据加载器训练模型。 需要注意的是,该示例代码中的dataset和num_epochs变量没有给出,需要根据具体情况进行设置。

相关推荐

最新推荐

timu.py

timu.py

JLSCM-1.0.218.0

JLSCM_1.0.218.0,金力客户端安装程序

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

【迁移学习在车牌识别中的应用优势与局限】: 讨论迁移学习在车牌识别中的应用优势和局限

![【迁移学习在车牌识别中的应用优势与局限】: 讨论迁移学习在车牌识别中的应用优势和局限](https://img-blog.csdnimg.cn/direct/916e743fde554bcaaaf13800d2f0ac25.png) # 1. 介绍迁移学习在车牌识别中的背景 在当今人工智能技术迅速发展的时代,迁移学习作为一种强大的技术手段,在车牌识别领域展现出了巨大的潜力和优势。通过迁移学习,我们能够将在一个领域中学习到的知识和模型迁移到另一个相关领域,从而减少对大量标注数据的需求,提高模型训练效率,加快模型收敛速度。这种方法不仅能够增强模型的泛化能力,提升识别的准确率,还能有效应对数据

怎么用公式计算每年的春节在新历什么时候

计算每年的春节在新历什么时候,可以使用农历的计算方法。 设春节的新历日期为公历的年份为y年,月份为m月,日子为d日。则可以用下面的公式来计算: - 首先,计算y年春节的公历日期。春节的公历日期可以通过查找农历历表或使用专门的计算工具来获取; - 然后,计算y年春节的“基准日”(指离春节最近的一天)的公历日期。根据农历的规则,春节前一天为“腊月二十九”,所以可以用下面的公式计算: 基准日 = 春节公历日期 - 29天 - 最后,根据基准日的星期几,以及春节在农历日历中的位置,来计算春节在新历中的日期。根据规则,春节在农历历法中是在正月初一,所以可以用下面的公式计算: 春节新历日期 =

建筑供配电系统相关课件.pptx

建筑供配电系统是建筑中的重要组成部分,负责为建筑内的设备和设施提供电力支持。在建筑供配电系统相关课件中介绍了建筑供配电系统的基本知识,其中提到了电路的基本概念。电路是电流流经的路径,由电源、负载、开关、保护装置和导线等组成。在电路中,涉及到电流、电压、电功率和电阻等基本物理量。电流是单位时间内电路中产生或消耗的电能,而电功率则是电流在单位时间内的功率。另外,电路的工作状态包括开路状态、短路状态和额定工作状态,各种电气设备都有其额定值,在满足这些额定条件下,电路处于正常工作状态。而交流电则是实际电力网中使用的电力形式,按照正弦规律变化,即使在需要直流电的行业也多是通过交流电整流获得。 建筑供配电系统的设计和运行是建筑工程中一个至关重要的环节,其正确性和稳定性直接关系到建筑物内部设备的正常运行和电力安全。通过了解建筑供配电系统的基本知识,可以更好地理解和应用这些原理,从而提高建筑电力系统的效率和可靠性。在课件中介绍了电工基本知识,包括电路的基本概念、电路的基本物理量和电路的工作状态。这些知识不仅对电气工程师和建筑设计师有用,也对一般人了解电力系统和用电有所帮助。 值得一提的是,建筑供配电系统在建筑工程中的重要性不仅仅是提供电力支持,更是为了确保建筑物的安全性。在建筑供配电系统设计中必须考虑到保护装置的设置,以确保电路在发生故障时及时切断电源,避免潜在危险。此外,在电气设备的选型和布置时也需要根据建筑的特点和需求进行合理规划,以提高电力系统的稳定性和安全性。 在实际应用中,建筑供配电系统的设计和建设需要考虑多个方面的因素,如建筑物的类型、规模、用途、电力需求、安全标准等。通过合理的设计和施工,可以确保建筑供配电系统的正常运行和安全性。同时,在建筑供配电系统的维护和管理方面也需要重视,定期检查和维护电气设备,及时发现和解决问题,以确保建筑物内部设备的正常使用。 总的来说,建筑供配电系统是建筑工程中不可或缺的一部分,其重要性不言而喻。通过学习建筑供配电系统的相关知识,可以更好地理解和应用这些原理,提高建筑电力系统的效率和可靠性,确保建筑物内部设备的正常运行和电力安全。建筑供配电系统的设计、建设、维护和管理都需要严谨细致,只有这样才能确保建筑物的电力系统稳定、安全、高效地运行。

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

【未来发展趋势下的车牌识别技术展望和发展方向】: 展望未来发展趋势下的车牌识别技术和发展方向

![【未来发展趋势下的车牌识别技术展望和发展方向】: 展望未来发展趋势下的车牌识别技术和发展方向](https://img-blog.csdnimg.cn/direct/916e743fde554bcaaaf13800d2f0ac25.png) # 1. 车牌识别技术简介 车牌识别技术是一种通过计算机视觉和深度学习技术,实现对车牌字符信息的自动识别的技术。随着人工智能技术的飞速发展,车牌识别技术在智能交通、安防监控、物流管理等领域得到了广泛应用。通过车牌识别技术,可以实现车辆识别、违章监测、智能停车管理等功能,极大地提升了城市管理和交通运输效率。本章将从基本原理、相关算法和技术应用等方面介绍

用c语言模拟一个公民身份证信息管理系统。通过读入文件数据,可以查询每个公民的身份证信息等。同时可以进行身份证校验,并将正确的信息保存至指定文件中。程序开始时,自动从文件读入信息到结构体数组,并提取每个公民的出生年月放入结构体中,同时进行身份证校验位是否正确,判断信息也放入结构体中。 每次结果输出后,仍应继续显示该界面,允许用户后继操作,直至其输入0,退出程序。 用户选择1时,显示校验位正确的公民信息;用户选择2时,显示校验位错误的公民信息,并统计人数。用户选择3时,将正确公民信息按出生日期排序并输出。用户选择4时,在正确公民信息中查找和指定姓名同名的人数。若用户选择0,会退出程序,但在此之前,会自动将身份证号码正确的数据写入文件person_checked.txt中。

好的,这是一个比较复杂的项目,需要涉及到文件读写、结构体、排序等知识点。我可以给您提供一些思路: 1. 定义结构体类型,包括姓名、身份证号、出生日期等信息。 2. 读取文件中的数据到结构体数组中,并进行身份证号码校验,将校验结果保存到结构体中。 3. 根据用户选择的操作,输出相应的信息。对于选择1,可以遍历结构体数组,输出校验位正确的公民信息;对于选择2,同样遍历结构体数组,输出校验位错误的公民信息,并统计人数;对于选择3,可以使用快速排序等算法对正确公民信息按出生日期排序,并输出;对于选择4,可以遍历结构体数组,统计和指定姓名同名的人数。 4. 如果用户选择0,退出程序前需要将身份证