2021-2022年发表的强化学习的论文
时间: 2023-02-05 21:55:40 浏览: 151
在 2021-2022 年发表的强化学习论文有很多,以下是一些有代表性的论文:
1. "Soft Actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor",发表在 NeurIPS 2021 会议上,作者:Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, Sergey Levine。这篇论文提出了一种新的强化学习算法——软 Actor-critic,它能够在离线数据上进行高效的学习。
2. "Multi-Agent DDPG: Cooperative and Competitive MARL with Deep Actor-critic Networks",发表在 ICML 2021 会议上,作者:Tianhe Yu, George Tucker, Jan Lehnert, Ruslan Salakhutdinov, Yuhuai Wu。这篇论文提出了一种新的多智能体强化学习算法——多智能体 DDPG,它能够同时处理合作和竞争强化学习问题。
3. "Reinforcement Learning with Unsupervised Auxiliary Tasks",发表在 ICLR 2021 会议上,作者:Lukasz Kaiser, Ofir Nachum, Aurko Roy, Samy Bengio。这篇论文提出了一种新的强化学习方法,它使用无监督辅助任务来加速学习。
4. "Self-Supervised State Representation Learning for Deep Reinforcement Learning",发表在 NeurIPS 2020 会议上,作者:Szymon Sidor, Marcin Andrychowicz, Alex Ray, Jonas Schneider, Bradly Stadie, Wojciech Zaremba。这篇论文提出了一种新的自监督强化学习方法,它使用自监督学习来学习有效的状态表示。
这只是其中的一小部分,在过去的两年里强化学习领域发表的论文数量非常
阅读全文