一个基本的Transformer分类器的示例代码
时间: 2023-02-09 08:46:40 浏览: 133
这是一个基本的Transformer分类器的示例代码:
```
import torch
import torch.nn as nn
class TransformerClassifier(nn.Module):
def __init__(self, num_classes, num_tokens, hidden_size=512, num_attention_heads=8, num_layers=6):
super(TransformerClassifier, self).__init__()
self.transformer = nn.Transformer(
d_model=hidden_size,
nhead=num_attention_heads,
num_encoder_layers=num_layers,
num_decoder_layers=num_layers
)
self.classifier = nn.Linear(hidden_size, num_classes)
self.init_weights()
def init_weights(self):
# Initialize the weights of the linear layer
nn.init.xavier_uniform_(self.classifier.weight)
nn.init.zeros_(self.classifier.bias)
def forward(self, input_ids, attention_mask=None):
# Pass the input through the transformer model
output = self.transformer(input_ids, attention_mask=attention_mask)[0]
# Take the mean of the output along the sequence dimension
mean_output = output.mean(dim=1)
# Pass the mean through the linear layer to get the logits
logits = self.classifier(mean_output)
return logits
# Instantiate the model with num_classes=2 and num_tokens=20000
model = TransformerClassifier(num_classes=2, num_tokens=20000)
# Define the input
input_ids = torch.LongTensor([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])
attention_mask = torch.LongTensor([[1, 1, 1, 1, 1], [1, 1, 1, 1, 1]])
# Get the logits
logits = model(input_ids, attention_mask=attention_mask)
print(logits)
```
这个模型接受两个输入:`input_ids` 和 `attention_mask`。`input_ids` 是一个形状为 `(batch_size, sequence_length)` 的张量,表示输入文本的单词编号。`attention_mask` 是一个形状为 `(batch_size, sequence_length)` 的张量,表示每个位置是否需要考虑。
在这个模型中,我们使用了 `nn.Transformer` 模型来
阅读全文