transformer分类器代码
时间: 2023-09-03 09:12:18 浏览: 68
fastvit代码资源
以下是使用Transformer作为分类器的示例代码,使用PyTorch实现:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class TransformerClassifier(nn.Module):
def __init__(self, vocab_size, max_seq_len, num_classes, d_model=256, num_heads=8, num_layers=3):
super(TransformerClassifier, self).__init__()
self.embedding = nn.Embedding(vocab_size, d_model)
self.pos_encoding = PositionalEncoding(d_model, max_seq_len)
self.transformer_encoder = nn.TransformerEncoder(
nn.TransformerEncoderLayer(d_model, num_heads),
num_layers)
self.fc = nn.Linear(d_model, num_classes)
def forward(self, x):
x = self.embedding(x)
x = self.pos_encoding(x)
x = x.permute(1, 0, 2) # (batch_size, seq_len, d_model) -> (seq_len, batch_size, d_model)
x = self.transformer_encoder(x)
x = x.mean(dim=0) # mean pooling over the sequence dimension
x = self.fc(x)
return F.log_softmax(x, dim=1)
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_seq_len):
super(PositionalEncoding, self).__init__()
self.d_model = d_model
self.pos_encoding = torch.zeros(max_seq_len, d_model)
position = torch.arange(0, max_seq_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
self.pos_encoding[:, 0::2] = torch.sin(position * div_term)
self.pos_encoding[:, 1::2] = torch.cos(position * div_term)
self.pos_encoding = self.pos_encoding.unsqueeze(0)
def forward(self, x):
x = x * math.sqrt(self.d_model)
seq_len = x.size(1)
x = x + self.pos_encoding[:, :seq_len, :]
return x
```
这个示例代码使用Transformer作为分类器,接受一个整数序列作为输入,输出一个概率分布,表示输入属于各个类别的概率。在这个示例中,我们使用了一个简单的平均池化来将Transformer的输出压缩成一个固定大小的向量,然后再通过一个全连接层将其映射到概率分布。
阅读全文