mnist数据集,给出完整的联邦学习代码
时间: 2023-07-02 13:06:50 浏览: 160
以下是一个基于PyTorch的联邦学习代码示例,用于在MNIST数据集上训练模型:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
# 定义全局变量
global_model = nn.Sequential(
nn.Linear(784, 256),
nn.ReLU(),
nn.Linear(256, 10)
)
# 定义客户端模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(784, 256)
self.fc2 = nn.Linear(256, 10)
def forward(self, x):
x = x.view(-1, 784)
x = nn.functional.relu(self.fc1(x))
x = self.fc2(x)
return x
# 训练客户端模型
def train_client(client_model, train_loader, learning_rate, num_epochs):
optimizer = optim.SGD(client_model.parameters(), lr=learning_rate, momentum=0.5)
criterion = nn.CrossEntropyLoss()
for epoch in range(num_epochs):
for data, target in train_loader:
optimizer.zero_grad()
output = client_model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
return client_model.state_dict()
# 合并客户端模型
def aggregate_models(client_models):
global_dict = global_model.state_dict()
for key in global_dict.keys():
global_dict[key] = torch.stack([client_models[i][key].float() for i in range(len(client_models))], 0).mean(0)
global_model.load_state_dict(global_dict)
# 客户端训练函数
def client_train(client_id, train_data, learning_rate, num_epochs):
client_model = Net()
client_train_loader = DataLoader(train_data, batch_size=64, shuffle=True)
client_state_dict = train_client(client_model, client_train_loader, learning_rate, num_epochs)
return client_state_dict
# 服务器端训练函数
def server_train(train_data, test_data, num_clients, learning_rate, num_epochs):
global global_model
client_models = []
for i in range(num_clients):
client_data = train_data[i]
client_state_dict = client_train(i, client_data, learning_rate, num_epochs)
client_models.append(client_state_dict)
aggregate_models(client_models)
# 评估模型
global_model.eval()
correct = 0
total = 0
with torch.no_grad():
for data, target in test_data:
output = global_model(data)
_, predicted = torch.max(output.data, 1)
total += target.size(0)
correct += (predicted == target).sum().item()
accuracy = 100 * correct / total
print('Accuracy: {:.2f}%'.format(accuracy))
# 加载数据
train_data = []
for i in range(10):
dataset = datasets.MNIST('./data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
train_data.append(torch.utils.data.Subset(dataset, [j for j in range(len(dataset)) if dataset[j][1] == i]))
test_data = datasets.MNIST('./data', train=False, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
# 训练模型
num_clients = 10
learning_rate = 0.01
num_epochs = 10
for epoch in range(5):
print('Epoch {}...'.format(epoch+1))
server_train(train_data, test_data, num_clients, learning_rate, num_epochs)
```
这个代码可以运行在一个包含10个客户端的联邦学习系统中,每个客户端使用一个简单的前馈神经网络进行训练,最后在服务器端对所有客户端的模型进行加权平均以获得全局模型。
阅读全文