写出卷积神经网络python
时间: 2023-02-06 13:31:50 浏览: 224
卷积神经网络 (Convolutional Neural Network, CNN) 是一种常用的深度学习模型,用于图像分类、物体检测和其他计算机视觉任务。
下面是一个简单的 CNN 的 Python 代码示例:
```python
import tensorflow as tf
# 定义卷积层
def conv_layer(inputs, filters, kernel_size, strides, padding, activation=tf.nn.relu):
layer = tf.keras.layers.Conv2D(filters=filters, kernel_size=kernel_size, strides=strides, padding=padding)(inputs)
if activation:
layer = tf.keras.layers.Activation(activation)(layer)
return layer
# 定义池化层
def pool_layer(inputs, pool_size, strides, padding):
return tf.keras.layers.MaxPool2D(pool_size=pool_size, strides=strides, padding=padding)(inputs)
# 定义全连接层
def dense_layer(inputs, units, activation=tf.nn.relu):
layer = tf.keras.layers.Dense(units=units)(inputs)
if activation:
layer = tf.keras.layers.Activation(activation)(layer)
return layer
# 定义输入层
inputs = tf.keras.layers.Input(shape=(224, 224, 3))
# 定义卷积层和池化层
x = conv_layer(inputs, filters=32, kernel_size=3, strides=1, padding='same')
x = conv_layer(x, filters=32, kernel_size=3, strides=1, padding='same')
x = pool_layer(x, pool_size=2, strides=2, padding='valid')
# 定义更多的卷积层和池化层
x = conv_layer(x, filters=64, kernel_size=3, strides=1, padding='same')
x = conv_layer(x, filters=64, kernel_size=3, strides=1, padding='same')
x = pool_layer(x, pool_size=2, strides=2, padding='valid')
# 定义全连接层
x = dense_layer(x, units=1024)
x = dense_layer(x, units=1024)
# 定义输出层
outputs = dense_layer(x, units=10, activation=None)
# 创建
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![docx](https://img-home.csdnimg.cn/images/20241231044901.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)