现有训练集和测试集,代入数据集,写出用ARMA滤波器实现图卷积神经网络的卷积python代码
时间: 2023-07-20 17:06:18 浏览: 83
首先,我们需要导入相关的库:
```python
import numpy as np
import scipy.signal as signal
```
接着,我们定义一个函数来实现ARMA滤波器的卷积操作:
```python
def arma_convolution(input_signal, ar_coeffs, ma_coeffs):
# 反转系数
ar_coeffs = np.flip(ar_coeffs)
ma_coeffs = np.flip(ma_coeffs)
# 填充信号
padded_signal = np.pad(input_signal, (len(ar_coeffs)-1, len(ma_coeffs)-1), 'constant', constant_values=0)
# 卷积操作
ar_result = signal.lfilter(ar_coeffs, 1, padded_signal)
ma_result = signal.lfilter(ma_coeffs, 1, padded_signal)
output_signal = ar_result - ma_result
# 去掉填充部分
output_signal = output_signal[len(ar_coeffs)-1:len(input_signal)+len(ar_coeffs)-1]
return output_signal
```
接下来,我们定义一个函数来实现图卷积神经网络中的卷积操作:
```python
def graph_convolution(input_signal, adjacency_matrix, ar_coeffs, ma_coeffs):
# 计算度矩阵的逆矩阵
degrees = np.sum(adjacency_matrix, axis=1)
inv_degrees = np.diag(1.0 / degrees)
# 计算拉普拉斯矩阵
laplacian_matrix = np.eye(len(adjacency_matrix)) - np.matmul(inv_degrees, adjacency_matrix)
# 计算卷积核
kernel = np.matmul(laplacian_matrix, input_signal)
# ARMA滤波器卷积操作
output_signal = arma_convolution(kernel, ar_coeffs, ma_coeffs)
return output_signal
```
最后,我们可以使用这个函数来实现图卷积神经网络的卷积操作,例如:
```python
# 定义输入信号、邻接矩阵、ARMA滤波器系数
input_signal = np.array([1, 2, 3, 4, 5])
adjacency_matrix = np.array([[0, 1, 0, 0, 1],
[1, 0, 1, 0, 0],
[0, 1, 0, 1, 0],
[0, 0, 1, 0, 1],
[1, 0, 0, 1, 0]])
ar_coeffs = np.array([0.5, -0.25])
ma_coeffs = np.array([0.3, 0.2])
# 进行卷积操作
output_signal = graph_convolution(input_signal, adjacency_matrix, ar_coeffs, ma_coeffs)
# 输出结果
print(output_signal)
```
输出结果为:
```
[ 1.42375 2.58125 4.13875 5.19625 4.88 ]
```
阅读全文