现有训练集和测试集,写一个python代码,要求:代入数据集,用ARMA滤波器实现图卷积神经网络的卷积
时间: 2023-07-20 10:06:15 浏览: 88
卷积神经网络模型Python代码
首先,需要导入相关的库,包括numpy、pandas、scipy等。
```
import numpy as np
import pandas as pd
from scipy.signal import lfilter
```
接着,读取训练集和测试集数据,并将其转换为numpy数组类型。
```
train_data = pd.read_csv('train.csv')
test_data = pd.read_csv('test.csv')
train_data = np.array(train_data)
test_data = np.array(test_data)
```
然后,定义ARMA滤波器函数。
```
def arma_filter(data, ar_coef, ma_coef):
ar = np.r_[1, -ar_coef]
ma = np.r_[1, ma_coef]
filtered_data = lfilter(ma, ar, data)
return filtered_data
```
在图卷积神经网络中,卷积的过程可以看作是对邻居节点特征的加权平均,因此需要定义邻接矩阵。
```
def adjacency_matrix(num_nodes):
adj = np.zeros((num_nodes, num_nodes))
for i in range(num_nodes):
for j in range(num_nodes):
if i == j:
adj[i][j] = 1
elif abs(i-j) <= 1:
adj[i][j] = 0.5
return adj
```
最后,进行卷积操作。
```
def convolution(data, adj_matrix, ar_coef, ma_coef):
num_nodes = data.shape[0]
filtered_data = np.zeros((num_nodes, data.shape[1]))
for i in range(num_nodes):
neighbor_indices = np.where(adj_matrix[i] == 1)[0]
neighbor_data = data[neighbor_indices]
filtered_neighbor_data = arma_filter(neighbor_data, ar_coef, ma_coef)
filtered_data[i] = np.mean(filtered_neighbor_data, axis=0)
return filtered_data
```
完整的代码如下:
```
import numpy as np
import pandas as pd
from scipy.signal import lfilter
def arma_filter(data, ar_coef, ma_coef):
ar = np.r_[1, -ar_coef]
ma = np.r_[1, ma_coef]
filtered_data = lfilter(ma, ar, data)
return filtered_data
def adjacency_matrix(num_nodes):
adj = np.zeros((num_nodes, num_nodes))
for i in range(num_nodes):
for j in range(num_nodes):
if i == j:
adj[i][j] = 1
elif abs(i-j) <= 1:
adj[i][j] = 0.5
return adj
def convolution(data, adj_matrix, ar_coef, ma_coef):
num_nodes = data.shape[0]
filtered_data = np.zeros((num_nodes, data.shape[1]))
for i in range(num_nodes):
neighbor_indices = np.where(adj_matrix[i] == 1)[0]
neighbor_data = data[neighbor_indices]
filtered_neighbor_data = arma_filter(neighbor_data, ar_coef, ma_coef)
filtered_data[i] = np.mean(filtered_neighbor_data, axis=0)
return filtered_data
train_data = pd.read_csv('train.csv')
test_data = pd.read_csv('test.csv')
train_data = np.array(train_data)
test_data = np.array(test_data)
adj_matrix = adjacency_matrix(train_data.shape[0])
ar_coef = [0.2, 0.3, 0.4]
ma_coef = [0.1, 0.2, 0.3]
filtered_train_data = convolution(train_data, adj_matrix, ar_coef, ma_coef)
filtered_test_data = convolution(test_data, adj_matrix, ar_coef, ma_coef)
print(filtered_train_data)
print(filtered_test_data)
```
阅读全文