帮我写一个thu_news数据集文本分类的代码实现数据预处理,数据提取,模型训练和评估
时间: 2024-03-21 18:38:16 浏览: 105
好的,对于thu_news数据集的文本分类问题,我们可以采用以下步骤来实现:
## 数据预处理
首先,我们需要加载thu_news数据集,将其划分为训练集和测试集,并进行数据预处理,包括文本分词、去除停用词、将文本转换为数字等。
```python
import jieba
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.preprocessing import LabelEncoder
# 加载数据集
data = pd.read_csv("thu_news.csv")
# 分词
data['content'] = data['content'].apply(lambda x: " ".join(jieba.cut(x)))
# 去除停用词
with open("stopwords.txt", "r", encoding="utf-8") as f:
stopwords = f.read().splitlines()
data['content'] = data['content'].apply(lambda x: " ".join([word for word in x.split() if word not in stopwords]))
# 将文本转换为数字
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(data['content'])
# 标签编码
le = LabelEncoder()
y = le.fit_transform(data['category'])
# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
## 模型训练
接着,我们可以使用朴素贝叶斯算法来训练我们的文本分类模型。
```python
from sklearn.naive_bayes import MultinomialNB
# 训练模型
clf = MultinomialNB()
clf.fit(X_train, y_train)
```
## 模型评估
最后,我们可以使用测试集来评估我们的模型性能,包括准确率、精确率、召回率和F1值等。
```python
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
# 预测
y_pred = clf.predict(X_test)
# 计算指标
acc = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred, average='macro')
recall = recall_score(y_test, y_pred, average='macro')
f1 = f1_score(y_test, y_pred, average='macro')
print("Accuracy: {:.4f}, Precision: {:.4f}, Recall: {:.4f}, F1: {:.4f}".format(acc, precision, recall, f1))
```
完整代码如下:
阅读全文