错误于heatmap.2(normalized_mtcars, main = "", density.info = "none", : breaks may not contain duplicate values
时间: 2024-10-04 11:01:04 浏览: 34
当你看到这个错误信息 "breaks may not contain duplicate values",它通常是在使用R语言的`heatmap.2()`函数创建热力图(heatmap)时遇到的问题。这个错误表明你在设置数据的颜色分段(即“breaks”)时,有些值出现了重复,这在生成连续颜色渐变时是不允许的。
`heatmap.2()`函数期望每个颜色分段代表数据的一个独特范围,如果两个或更多的数值对应相同的颜色,那么会引发这个错误。解决这个问题,你需要检查并调整提供的 breaks 参数,确保每个区间都是唯一的:
1. 检查`normalized_mtcars`数据是否有重复的最大值、最小值或其他关键分割点。
2. 可能需要使用`seq()`或`unique()`等函数来创建一个没有重复值的新序列作为 breaks。
3. 如果你想保持原数据范围不变但去除重复,可以考虑对数据进行排序后再提取唯一值。
例如:
```r
# 假设data是一个向量
unique_breaks <- unique(sort(normalized_mtcars))
heatmap.2(normalized_mtcars, breaks=unique_breaks, main="", density.info="none")
```
完成上述步骤后,你应该能够创建出没有重复值划分的热力图了。如果你还有关于如何处理这类问题的具体疑问,随时提问哦!
相关问题
self.learning_rate = config.learning_rate self.learning_rates = [self.learning_rate, self.learning_rate * 0.5, self.learning_rate * 0.1] self.learning_rate_boundaries = [50000, 75000] self.max_iter = 10000 self.test_iter = 5000 self.disp_iter = 100 self.snapshot_iter = 5000 self.test_initialization = False self.reg_constant = 0.0 self.data_format = 'channels_first' self.network_parameters = OrderedDict(num_filters_base=config.num_filters_base, activation=config.activation, dropout_ratio=config.dropout_ratio, num_levels=config.num_levels, heatmap_initialization=True, data_format=self.data_format)
这段代码是在MainLoop类的初始化方法中设置了一些训练参数和网络参数。
- self.learning_rate:学习率,根据配置文件中的learning_rate来设置。
- self.learning_rates:学习率列表,根据self.learning_rate计算得到,包括三个值,分别为self.learning_rate、self.learning_rate * 0.5、self.learning_rate * 0.1。
- self.learning_rate_boundaries:学习率变化的边界,根据配置文件中的50000和75000来设置。
- self.max_iter:最大迭代次数,设置为10000。
- self.test_iter:测试迭代次数,设置为5000。
- self.disp_iter:显示迭代次数,每迭代100次显示一次。
- self.snapshot_iter:保存模型迭代次数,每迭代5000次保存一次模型。
- self.test_initialization:测试初始化标志,设置为False。
- self.reg_constant:正则化系数,设置为0.0。
- self.data_format:数据格式,设置为'channels_first'。
- self.network_parameters:网络参数,使用有序字典OrderedDict保存。包括num_filters_base、activation、dropout_ratio、num_levels、heatmap_initialization和data_format等参数。
这些参数和网络参数将在训练过程中使用。如果你还有其他问题,请继续提问。
import pandas as pdfrom pyecharts import options as optsfrom pyecharts.charts import HeatMap# 假设 risk_factor_df 是已经读入的 DataFrame 对象risk_factor_df.fillna(0, inplace=True)# 将 DataFrame 转换为字符串,并去除两端的空格risk_factor_df1 = str(risk_factor_df).strip()# 将字符串中的 "//" 和 "?" 替换成 0risk_factor_df1 = risk_factor_df1.replace("//", "0")risk_factor_df1 = risk_factor_df1.replace("?", "0")# 将字符串转换为 DataFramerisk_factor_df2 = pd.read_csv(pd.compat.StringIO(risk_factor_df1))# 计算相关系数矩阵corr_matrix = risk_factor_df2.corr()# 将矩阵转换为列表corr_matrix_list = corr_matrix.values.tolist()# 绘制热力图heatmap = HeatMap()heatmap.add_xaxis(list(corr_matrix.columns))heatmap.add_yaxis("", list(corr_matrix.index), corr_matrix_list)heatmap.set_global_opts( title_opts=opts.TitleOpts(title="Risk Factor Correlation Heatmap"), visualmap_opts=opts.VisualMapOpts(is_show=True, min_=corr_matrix.min().min(), max_=corr_matrix.max().max()))heatmap.render("correlation_heatmap.html")代码运行结果
这段代码的运行结果将会生成一个名为 "correlation_heatmap.html" 的文件,该文件是一个热力图,用来展示风险因素之间的相关系数。热力图的 x 轴和 y 轴分别表示风险因素的名称,颜色深浅表示相关系数的强度,颜色越深表示相关系数越强。同时,热力图还会有一个标题,标题为 "Risk Factor Correlation Heatmap"。在绘制热力图之前,代码还进行了一些数据预处理的操作,包括将 DataFrame 对象中的空值填充为 0,将 DataFrame 对象转换为字符串并去除两端的空格,将字符串中的 "//" 和 "?" 替换成 0,将字符串转换为 DataFrame 对象,计算相关系数矩阵,将矩阵转换为列表等操作。
阅读全文