cov_Ip = mean_Ip - mean_I .* mean_p;
时间: 2023-11-23 07:06:22 浏览: 190
这段代码是guided filter中的一步,用于计算输入图像I和导向图像p的点乘积在滤波窗口内的协方差矩阵,其中mean_Ip、mean_I和mean_p分别为之前计算的矩阵。
具体来说,代码中的mean_Ip为之前计算的输入图像I和导向图像p的点乘积的均值矩阵,mean_I为输入图像I在滤波窗口内的均值矩阵,mean_p为导向图像p在滤波窗口内的均值矩阵。则cov_Ip的计算公式为:
cov_Ip = mean_Ip - mean_I .* mean_p;
其中.*为矩阵的逐元素相乘,即对应位置的元素相乘得到的新矩阵。最终得到的cov_Ip矩阵记录了在滤波窗口内,输入图像I和导向图像p的点乘积的协方差矩阵。
相关问题
r=16; [hei, wid] = size(I); N = boxfilter(ones(hei, wid), r); % the size of each local patch; N=(2r+1)^2 except for boundary pixels. mean_I = boxfilter(I, r) ./ N; mean_p = boxfilter(p, r) ./ N; mean_Ip = boxfilter(I.*p, r) ./ N; cov_Ip = mean_Ip - mean_I .* mean_p; % this is the covariance of (I, p) in each local patch. mean_II = boxfilter(I.*I, r) ./ N; var_I = mean_II - mean_I .* mean_I; %weight epsilon=(0.001*(max(p(:))-min(p(:))))^2; r1=1; N1 = boxfilter(ones(hei, wid), r1); % the size of each local patch; N=(2r+1)^2 except for boundary pixels. mean_I1 = boxfilter(I, r1) ./ N1; mean_II1 = boxfilter(I.*I, r1) ./ N1; var_I1 = mean_II1 - mean_I1 .* mean_I1; chi_I=sqrt(abs(var_I1.*var_I)); weight=(chi_I+epsilon)/(mean(chi_I(:))+epsilon); gamma = (4/(mean(chi_I(:))-min(chi_I(:))))*(chi_I-mean(chi_I(:))); gamma = 1 - 1./(1 + exp(gamma)); %result a = (cov_Ip + (eps./weight).*gamma) ./ (var_I + (eps./weight)); b = mean_p - a .* mean_I; mean_a = boxfilter(a, r) ./ N; mean_b = boxfilter(b, r) ./ N; q = mean_a .* I + mean_b; end function imDst = boxfilter(imSrc, r)
这段代码实现了什么功能?
这段代码实现了导向滤波器的过程,用于图像去噪和图像锐化等。具体来说,代码中首先定义了一个窗口大小r,然后根据窗口大小r计算出每个局部块的大小N,并使用boxfilter函数对输入图像I和引导图像p进行均值滤波,得到图像的平均值mean_I和引导图像的平均值mean_p,以及图像和引导图像的乘积的平均值mean_Ip,用于计算协方差cov_Ip和方差var_I。
接着,通过设置一个权值epsilon,使用boxfilter函数对输入图像I进行均值滤波,得到图像的平均值mean_I1和平方和的平均值mean_II1,用于计算协方差的平方和chi_I。然后,根据chi_I和epsilon计算权重weight和gamma,其中gamma是一个调节因子,用于调整协方差的影响。最后,根据协方差cov_Ip、方差var_I、权重weight和调节因子gamma计算出滤波后的图像q,并输出结果。
该函数中还定义了一个名为boxfilter的函数,用于对输入图像进行均值滤波。
def guided_filter(Image,p,r,eps): # 基于导向滤波进行暗通道图像的变换 #Image归一化之后的原图,p最小值图像,r导向滤波搜索范围,eps为惩罚项,输出导向滤波后的图像 # q = a * I + b mean_I = cv.blur(Image, (r, r)) # I的均值平滑 mean_p = cv.blur(p, (r, r)) # p的均值平滑 mean_II = cv.blur(Image*Image, (r, r)) # I*I的均值平滑 mean_Ip = cv.blur(Image*p, (r, r)) # I*p的均值平滑 var_I = mean_II - mean_I * mean_I # 方差 cov_Ip = mean_Ip - mean_I * mean_p # 协方差 a = cov_Ip / (var_I +eps) b = mean_p - a *mean_I mean_a = cv.blur(a, (r, r)) # 对a、b进行均值平滑 mean_b = cv.blur(b, (r, r)) q = mean_a*Image + mean_b return q
这段代码定义了一个名为`guided_filter`的函数,它基于导向滤波进行暗通道图像的变换。下面是对代码的解释:
该函数接受四个参数:`Image`、`p`、`r`和`eps`。`Image`是归一化之后的原始图像,`p`是最小值图像,`r`是导向滤波的搜索范围,`eps`是惩罚项。
在函数内部,首先使用`cv.blur`函数对`Image`和`p`进行均值平滑,得到`mean_I`和`mean_p`。
接下来,使用`cv.blur`函数对`Image*Image`和`Image*p`进行均值平滑,分别得到`mean_II`和`mean_Ip`。
然后,计算方差(`var_I`)和协方差(`cov_Ip`),这些用于计算导向滤波器的参数。
通过将方差和惩罚项(`eps`)相加,计算导向滤波器的参数 `a = cov_Ip / (var_I + eps)` 和 `b = mean_p - a * mean_I`。
接着,使用`cv.blur`函数对参数 `a` 和 `b` 进行均值平滑,得到 `mean_a` 和 `mean_b`。
最后,使用计算得到的参数 `mean_a` 和 `mean_b` 对原始图像 `Image` 进行线性变换,得到经过导向滤波后的图像 `q`。
函数返回经过导向滤波后的图像 `q`。
如果您在使用这段代码时遇到任何问题,请提供更多上下文或错误信息,以便我可以更好地帮助您。
阅读全文