多元线性回归,预测模型matlab代码
时间: 2023-11-25 07:48:17 浏览: 103
多元线性回归是一种用于建立多个自变量和一个因变量之间关系的统计模型。在MATLAB中,可以使用多种函数实现多元线性回归预测模型,例如fitlm、regress等。下面是一个使用fitlm函数实现多元线性回归预测的MATLAB代码示例:
```matlab
% 导入数据
data = readtable('data.csv');
% 拆分数据集
train_data = data(1:80,:);
test_data = data(81:end,:);
% 构建模型
model = fitlm(train_data, 'y ~ x1 + x2 + x3');
% 预测结果
y_pred = predict(model, test_data);
% 计算误差
mse = mean((y_pred - test_data.y).^2);
rmse = sqrt(mse);
```
其中,data.csv是包含自变量和因变量的数据文件,y表示因变量,x1、x2、x3表示自变量。train_data和test_data分别是训练集和测试集。fitlm函数用于构建多元线性回归模型,predict函数用于预测结果,mse和rmse分别表示均方误差和均方根误差。
相关问题
多元线性回归预测模型matlab代码
多元线性回归是一种用于预测多个自变量与因变量之间关系的统计模型。在MATLAB中,可以使用以下代码创建多元线性回归预测模型:
```matlab
% 准备数据
X = [x1 x2 x3]; % 自变量矩阵,每一列代表一个自变量
Y = [y]; % 因变量向量
% 拟合多元线性回归模型
mdl = fitlm(X, Y); % 使用fitlm函数拟合多元线性回归模型
% 查看回归系数和统计信息
disp(mdl); % 显示回归系数和统计信息
disp('R-squared:');
disp(mdl.Rsquared.Ordinary); % 显示R方值
% 进行预测
X_new = [x1_new x2_new x3_new]; % 新的自变量数值
Y_pred = predict(mdl, X_new); % 使用predict函数进行预测
% 绘制结果
scatter3(x1, x2, x3, 'filled'); % 绘制原始数据点
hold on;
scatter3(x1_new, x2_new, x3_new, 'filled', 'r'); % 绘制新的自变量点
scatter3(x1_new, x2_new, x3_new, 'filled', 'g'); % 绘制预测结果点
xlabel('x1'); ylabel('x2'); zlabel('x3'); % 设置坐标轴标签
legend('Original Data', 'New Data', 'Predicted Data'); % 设置图例
```
以上代码首先准备数据,然后使用fitlm函数拟合多元线性回归模型。接着可以查看回归系数和统计信息,以及进行预测。最后,可以绘制原始数据点、新的自变量点和预测结果点来可视化预测结果。这样就可以使用MATLAB创建一个多元线性回归预测模型,并进行预测了。
多元线性回归预测模型matlab
多元线性回归预测模型的MATLAB代码可以使用ridge regression(岭回归)方法来实现。岭回归是一种用于处理多重共线性问题的回归方法,它通过在模型中添加一个正则化项来控制模型的复杂度。
下面是一个使用MATLAB实现岭回归的函数示例:
```MATLAB
function \[w\] = ridgeRegression(x, y, lam)
xTx = x' * x;
\[m, n\] = size(xTx);
temp = xTx + eye(m, n) * lam;
if det(temp) == 0
disp('This matrix is singular, cannot do inverse');
end
w = temp^(-1) * x' * y;
end
```
在这个函数中,输入参数x是一个包含多个特征的矩阵,y是对应的目标变量向量,lam是岭回归的正则化参数。函数的输出w是回归系数向量,可以用于预测新的样本。
要使用这个函数来建立多元线性回归模型,你需要先准备好包含特征和目标变量的数据集。然后,将特征矩阵和目标变量向量作为输入参数传递给ridgeRegression函数,同时指定合适的正则化参数lam。函数将返回回归系数向量w,可以用于预测新的样本。
参考文献:
- \[1\] 数学建模与数学试验多元线性回归MATLAB实现
- \[2\] 逐步回归详解(stepwise使用指南)
- \[3\] 基于Matlab的数据多元回归分析的研究
请注意,这只是一个示例函数,具体的多元线性回归模型的建立和预测过程可能需要根据具体的数据和问题进行调整。
#### 引用[.reference_title]
- *1* *3* [MATLAB实现多元线性回归预测](https://blog.csdn.net/weixin_34315665/article/details/85948933)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item]
- *2* [基于matlab的多元线性回归分析](https://blog.csdn.net/xiaoxiaodawei/article/details/105707346)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文