python编写lr算法
时间: 2023-05-23 08:02:34 浏览: 162
可以使用Python编写LR算法。在Python中,可以使用包括Scikit-learn在内的许多机器学习库来实现Logistic Regression模型的快速开发。你需要导入Scikit-learn和一些必要的类(如LogisticRegression和train_test_split)来完成这个任务。然后,使用其它Python库来完成车载工具的特征工程和数据预处理阶段。最后,利用已经准备好的数据在Logistic Regression模型上训练和测试。
相关问题
利用随机库make_classification写原生Python编写感知器算法
好的,我来解答您的问题。
感知器算法是一种二分类算法,它的目的是找到一个线性超平面来将两类数据分开。在这里,我将使用 Python 的随机库 make_classification 生成一些随机数据,然后使用原生 Python 编写感知器算法。
首先,我们需要导入必要的库:
```python
import numpy as np
from sklearn.datasets import make_classification
```
然后,我们可以使用 make_classification 生成一些随机数据:
```python
X, y = make_classification(n_samples=100, n_features=2, n_informative=2, n_redundant=0, n_clusters_per_class=1, random_state=42)
```
这会生成 100 个样本,每个样本有 2 个特征,其中 2 个特征是有用的,没有冗余特征,每个类别有 1 个簇,并且使用随机种子 42。
接下来,我们可以定义感知器算法:
```python
class Perceptron:
def __init__(self, learning_rate=0.1, n_iters=1000):
self.lr = learning_rate
self.n_iters = n_iters
self.activation_func = self._unit_step_func
self.weights = None
self.bias = None
def fit(self, X, y):
n_samples, n_features = X.shape
# init parameters
self.weights = np.zeros(n_features)
self.bias = 0
y_ = np.array([1 if i > 0 else 0 for i in y])
# gradient descent
for _ in range(self.n_iters):
for idx, x_i in enumerate(X):
linear_output = np.dot(x_i, self.weights) + self.bias
y_predicted = self.activation_func(linear_output)
update = self.lr * (y_[idx] - y_predicted)
self.weights += update * x_i
self.bias += update
def predict(self, X):
linear_output = np.dot(X, self.weights) + self.bias
y_predicted = self.activation_func(linear_output)
return y_predicted
def _unit_step_func(self, x):
return np.where(x>=0, 1, 0)
```
该算法使用梯度下降法来更新权重和偏置。在初始化时,我们定义了学习率和迭代次数,激活函数使用了阶跃函数,权重和偏置初始化为零。在拟合过程中,我们对每个样本进行迭代,根据预测值和真实值之间的误差更新权重和偏置。在预测过程中,我们计算线性输出,然后使用激活函数将其转换为二进制输出。
最后,我们可以使用以下代码来训练和测试我们的模型:
```python
perceptron = Perceptron(learning_rate=0.1, n_iters=1000)
perceptron.fit(X, y)
y_pred = perceptron.predict(X)
print(y_pred)
```
这将打印出模型的预测结果。
希望这个例子对您有所帮助!
用python编写基于强化学习的pid调参算法的代码
下面是一个基于强化学习的PID调参算法的Python代码示例,使用了Deep Q-Learning算法:
```python
import gym
from gym import spaces
import numpy as np
class PIDEnv(gym.Env):
metadata = {'render.modes': ['human']}
def __init__(self):
self.action_space = spaces.Box(low=np.array([-1]), high=np.array([1]), dtype=np.float32)
self.observation_space = spaces.Box(low=np.array([0, 0, 0]), high=np.array([100, 100, 100]), dtype=np.float32)
self.target = 50
self.current = 0
self.timestep = 0.01
self.max_timestep = 1000
self.state = np.array([self.current, 0, 0])
self.pid_params = [0, 0, 0]
def step(self, action):
self.current += action[0]
error = self.target - self.current
self.pid_params[0] += self.timestep * error
self.pid_params[1] = error / self.timestep
self.pid_params[2] = (error - self.state[1]) / self.timestep
reward = -abs(error)
self.state = np.array([self.current, error, self.pid_params[0]])
self.timestep += 1
done = self.timestep >= self.max_timestep
return self.state, reward, done, {}
def reset(self):
self.current = 0
self.timestep = 0.01
self.pid_params = [0, 0, 0]
self.state = np.array([self.current, 0, 0])
return self.state
def render(self, mode='human'):
print(f"Current: {self.current}, Error: {self.state[1]}, Integral: {self.pid_params[0]}")
def close(self):
pass
class Agent:
def __init__(self, env):
self.env = env
self.memory = []
self.gamma = 0.99
self.epsilon = 1.0
self.epsilon_min = 0.01
self.epsilon_decay = 0.995
self.batch_size = 32
self.learning_rate = 0.001
self.model = self.create_model()
def create_model(self):
model = Sequential()
state_shape = self.env.observation_space.shape
model.add(Dense(24, input_dim=state_shape[0], activation="relu"))
model.add(Dense(24, activation="relu"))
model.add(Dense(self.env.action_space.shape[0]))
model.compile(loss="mean_squared_error", optimizer=Adam(lr=self.learning_rate))
return model
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def act(self, state):
if np.random.rand() <= self.epsilon:
return self.env.action_space.sample()
return self.model.predict(state)[0]
def replay(self):
if len(self.memory) < self.batch_size:
return
samples = np.random.sample(self.memory, self.batch_size)
for state, action, reward, next_state, done in samples:
target = reward
if not done:
target = reward + self.gamma * np.amax(self.model.predict(next_state)[0])
target_f = self.model.predict(state)
target_f[0][action] = target
self.model.fit(state, target_f, epochs=1, verbose=0)
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
def load(self, name):
self.model.load_weights(name)
def save(self, name):
self.model.save_weights(name)
if __name__ == '__main__':
env = PIDEnv()
agent = Agent(env)
num_episodes = 1000
for e in range(num_episodes):
state = env.reset()
state = np.reshape(state, [1, env.observation_space.shape[0]])
for time in range(500):
action = agent.act(state)
next_state, reward, done, _ = env.step(action)
next_state = np.reshape(next_state, [1, env.observation_space.shape[0]])
agent.remember(state, action, reward, next_state, done)
state = next_state
agent.replay()
if done:
print(f"episode: {e}/{num_episodes}, score: {time}, e: {agent.epsilon}")
break
```
在这个示例中,我们定义了一个PIDEnv类,它是一个OpenAI Gym环境,用于模拟一个带有PID控制器的系统。我们还定义了一个Agent类,它使用Deep Q-Learning算法来选择动作,并使用经验回放来训练模型。在主函数中,我们运行了1000个回合,并在每个回合中训练了代理。
阅读全文