transformer模型多头注意力实现代码
时间: 2024-01-03 21:22:51 浏览: 74
基于pytorch多头注意力机制实现数字预测源码+模型+数据集.zip
以下是一个使用PyTorch实现Transformer模型中多头注意力的代码示例:
```python
import torch
import torch.nn as nn
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, num_heads):
super(MultiHeadAttention, self).__init__()
self.num_heads = num_heads
self.d_model = d_model
assert d_model % num_heads == 0, "d_model必须能够被num_heads整除"
self.d_k = d_model // num_heads
self.W_Q = nn.Linear(d_model, d_model)
self.W_K = nn.Linear(d_model, d_model)
self.W_V = nn.Linear(d_model, d_model)
self.W_O = nn.Linear(d_model, d_model)
def forward(self, Q, K, V, mask=None):
batch_size = Q.size(0)
Q = self.W_Q(Q).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
K = self.W_K(K).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
V = self.W_V(V).view(batch_size,-1, self.num_heads, self.d_k).transpose(1, 2)
scores = torch.matmul(Q, K.transpose(-2, -1)) / torch.sqrt(torch.tensor(self.d_k, dtype=torch.float32))
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e9)
attention_weights = torch.softmax(scores, dim=-1)
output = torch.matmul(attention_weights, V)
output = output.transpose(1, 2).contiguous().view(batch_size, -1, self.num_heads * self.d_k)
output = self.W_O(output)
return output, attention_weights
```
阅读全文