解释一下下面的代码”module Serial_output( input i_clk , input i_rst , input i_T_valid , input signed[9:0] i_T , input [3 :0] i_Device_ID , output reg o_Serial_data ); reg Frame_valid = 1'd0 ; reg [13:0] Frame = 13'd0; always @(posedge i_clk)begin if(i_rst == 1'b1)begin Frame_valid <= 1'd0 ; Frame <= 13'd0; end else if(i_T_valid)begin Frame_valid <= 1'b1 ; Frame <= {i_Device_ID,i_T}; end else Frame_valid <= 1'd0 ; end reg [2:0] s_Frame_valid = 3'd0; always @(posedge i_clk)begin s_Frame_valid <= {s_Frame_valid[1:0],Frame_valid}; end reg [4:0] r_bit_cnt = 5'd0; always @(posedge i_clk)begin if(i_rst == 1'b1) r_bit_cnt <= 5'd0; else if(s_Frame_valid[2]) r_bit_cnt <= 5'd0; else if(r_bit_cnt >= 5'd15) r_bit_cnt <= r_bit_cnt; else r_bit_cnt <= r_bit_cnt + 1'b1; end always @(*)begin case (r_bit_cnt) 5'd0 :o_Serial_data <= Frame[15] ; 5'd1 :o_Serial_data <= Frame[14] ; 5'd2 :o_Serial_data <= Frame[13] ; 5'd3 :o_Serial_data <= Frame[12] ; 5'd4 :o_Serial_data <= Frame[11] ; 5'd5 :o_Serial_data <= Frame[10] ; 5'd6 :o_Serial_data <= Frame[9] ; 5'd7 :o_Serial_data <= Frame[8] ; 5'd8 :o_Serial_data <= Frame[7] ; 5'd9 :o_Serial_data <= Frame[6] ; 5'd10 :o_Serial_data <= Frame[5] ; 5'd11 :o_Serial_data <= Frame[4] ; 5'd12 :o_Serial_data <= Frame[3] ; 5'd13 :o_Serial_data <= Frame[2] ; 5'd14 :o_Serial_data <= Frame[1] ; 5'd15 :o_Serial_data <= Frame[0] ; endcase end endmodule“

时间: 2024-03-28 22:38:55 浏览: 15
这是一个 Verilog HDL 设计的串口输出模块,可以将输入的数据通过串口发送出去。其中输入包括时钟信号 i_clk、复位信号 i_rst、需要发送的数据 i_T、i_T_valid 表示输入数据是否有效、i_Device_ID 表示设备 ID,输出为串口数据 o_Serial_data。该模块的工作流程如下: 1. 如果复位信号 i_rst 为高电平,则 Frame_valid 和 Frame 都会被置为 0。 2. 如果输入数据 i_T_valid 为高电平,则 Frame_valid 被置为 1,同时 Frame 被赋值为 i_Device_ID 和 i_T 的组合。 3. 如果输入数据 i_T_valid 为低电平,则 Frame_valid 被置为 0。 4. s_Frame_valid 表示连续三个时钟周期内 Frame_valid 的状态,用于判断数据传输是否结束。 5. r_bit_cnt 表示当前发送的位数,如果复位信号 i_rst 为高电平,则 r_bit_cnt 被置为 0。 6. 根据 r_bit_cnt 的值,将 Frame 中的数据逐位输出到 o_Serial_data 中。 需要注意的是,该模块的数据传输速率取决于时钟信号 i_clk 的频率,以及输入数据 i_T_valid 的变化速度。在实际应用中,需要根据具体要求进行修改。
相关问题

将这个Verilog顶层文件改成VHDL的格式“module Tem_Top( input i_clk , input i_rst , input i_ADC_clk , input [9:0] i_ADC , output o_LED , output o_Serial_data ); parameter P_AN = 10'sd1 ; parameter P_BN = -10'sd75 ; parameter P_TEMP_MAX = 10'sd75 ; parameter P_TEMP_MIN = -10'sd25 ; parameter P_Device_ID = 4'd7 ; wire w_ADC_valid ; wire [9:0] w_ADC ; Time_sample Time_sample_inst( .i_clk (i_clk ), .i_rst (i_rst ), .i_ADC_clk (i_ADC_clk ), .i_ADC (i_ADC ), .o_ADC_valid (w_ADC_valid ), .o_ADC (w_ADC ) ); wire w_T_valid ; wire signed[13:0] w_T ; Calibration Calibration_inst( .i_clk ( i_clk ), .i_rst ( i_rst ), .i_an ( P_AN ), .i_bn ( P_BN ), .i_sample_valid ( w_ADC_valid ), .i_sample_ADC ( w_ADC ), .o_T_valid ( w_T_valid ), .o_T ( w_T ) ); LED_color #( .P_TEMP_MAX (P_TEMP_MAX ), .P_TEMP_MIN (P_TEMP_MIN ) ) LED_color_inst( .i_clk ( i_clk ), .i_rst ( i_rst ), .i_T_valid ( w_T_valid ), .i_T ( w_T ), .o_LED ( o_LED ) ); Serial_output Serial_output_inst( .i_clk ( i_clk ), .i_rst ( i_rst ), .i_T_valid ( w_T_valid ), .i_T ( w_T ), .i_Device_ID ( P_Device_ID ), .o_Serial_data ( o_Serial_data ) ); endmodule”

entity Tem_Top is generic ( P_AN: integer := 1; P_BN: integer := -75; P_TEMP_MAX: integer := 75; P_TEMP_MIN: integer := -25; P_Device_ID: integer := 7 ); port ( i_clk : in std_logic; i_rst : in std_logic; i_ADC_clk : in std_logic; i_ADC : in std_logic_vector(9 downto 0); o_LED : out std_logic; o_Serial_data: out std_logic ); end entity Tem_Top; architecture rtl of Tem_Top is signal w_ADC_valid: std_logic; signal w_ADC: std_logic_vector(9 downto 0); signal w_T_valid: std_logic; signal w_T: signed(13 downto 0); begin Time_sample_inst: entity work.Time_sample port map ( i_clk => i_clk, i_rst => i_rst, i_ADC_clk => i_ADC_clk, i_ADC => i_ADC, o_ADC_valid => w_ADC_valid, o_ADC => w_ADC ); Calibration_inst: entity work.Calibration port map ( i_clk => i_clk, i_rst => i_rst, i_an => P_AN, i_bn => P_BN, i_sample_valid=> w_ADC_valid, i_sample_ADC => w_ADC, o_T_valid => w_T_valid, o_T => w_T ); LED_color_inst: entity work.LED_color generic map ( P_TEMP_MAX => P_TEMP_MAX, P_TEMP_MIN => P_TEMP_MIN ) port map ( i_clk => i_clk, i_rst => i_rst, i_T_valid => w_T_valid, i_T => w_T, o_LED => o_LED ); Serial_output_inst: entity work.Serial_output port map ( i_clk => i_clk, i_rst => i_rst, i_T_valid => w_T_valid, i_T => w_T, i_Device_ID => P_Device_ID, o_Serial_data => o_Serial_data ); end architecture rtl;

这行代码什么意思input Clk; input Rst_n; input ADC_Din;

这行代码定义了三个输入端口,分别为Clk、Rst_n和ADC_Din。 其中,Clk是时钟输入端口,用于接收时钟信号;Rst_n是复位信号输入端口,用于接收复位信号;ADC_Din是ADC(模数转换器)数据输入端口,用于接收ADC输出的数字信号。 这是FPGA中描述输入端口的Verilog HDL代码。Verilog HDL是一种硬件描述语言,用于描述数字电路的行为和结构。

相关推荐

最新推荐

recommend-type

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a
recommend-type

matlab建立计算力学课程的笔记和文件.zip

matlab建立计算力学课程的笔记和文件.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望