base_model = tf.keras.Model(input1, max3, name="3dcnn") # Build the base model base_model.summary() base_model.load_weights('Modelli/CNN_weights_Hipp_finale.h5', by_name=True) #base_model.load_weights('Modelli/CNN_VOID_weights_15.h5', by_name=True) base_model.trainable = False # 固定base_model的参数不进行训练 # Set the learning Rate initial_learning_rate = 0.0001 reduce_Rl=tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=2, verbose=1)

时间: 2023-07-15 16:10:20 浏览: 64
这段代码是用 Tensorflow 构建一个 3D CNN 的模型,并加载了之前训练好的权重。其中,`input1` 是输入的数据,`max3` 是经过卷积池化后得到的特征向量。`base_model.trainable = False` 表示将模型中的参数固定不进行训练。`initial_learning_rate` 表示学习率的初始值。`reduce_Rl` 是一个回调函数,用于在训练过程中动态地调整学习率。具体来说,当验证集上的损失不再下降时,学习率将按照因子 `factor` 进行衰减,`patience` 表示等待的轮数。
相关问题

model = tf.keras.models.Sequential([ tf.keras.layers.Dense(64, activation='relu'), tf.keras.layers.Dense(10) ]) sample_input = tf.ones((1, input_shape)) sample_output = model(sample_input) loss = tf.sqrt(tf.reduce_mean(tf.square(prediction-ys))) var_list = model.trainable_variables train_step = tf.keras.optimizers.SGD(0.9).minimize(loss, var_list=var_list)出现这个错误怎么改NameError: name 'input_shape' is not defined

这个错误是因为代码中使用了一个未定义的变量 "input_shape"。你需要在代码中定义变量 "input_shape" 并赋值,例如: ``` input_shape = 10 # 假设输入的形状为 (1, 10) model = tf.keras.models.Sequential([ tf.keras.layers.Dense(64, activation='relu'), tf.keras.layers.Dense(10) ]) sample_input = tf.ones((1, input_shape)) sample_output = model(sample_input) loss = tf.sqrt(tf.reduce_mean(tf.square(prediction-ys))) var_list = model.trainable_variables train_step = tf.keras.optimizers.SGD(0.9).minimize(loss, var_list=var_list) ``` 在这个例子中,我们假设输入的形状是 (1, 10),并将其赋值给了变量 "input_shape"。你需要根据实际情况修改该变量的赋值。

base_model = tf.keras.applications.MobileNet(weights = "imagenet", include_top = False, input_shape = input_shape) base_model.trainable = False inputs = keras.Input(shape = input_shape) x = base_model(inputs, training = False) x = tf.keras.layers.GlobalAveragePooling2D()(x) x = tf.keras.layers.Dropout(0.2)(x) x = tf.keras.layers.Dense(len(categories), activation="softmax")(x) model = keras.Model(inputs = inputs, outputs = x, name="LeafDisease_MobileNet") weight_path = os.path.join(base_dir, 'checkpoints', 'my_checkpoint') model.load_weights(weight_path) img = plt.imread(img_path) img = img / 255. img = cv2.resize(img, (224, 224)) img = img.reshape(-1, 224, 224, 3) img.astype('float32') result = model.predict(img) cate_result = categories[np.argmax(result, axis=1)[0]] return cate_result可以详细解释一下每行代码的作用吗

当然可以。 1. `base_model = tf.keras.applications.MobileNet(weights="imagenet", include_top=False, input_shape=input_shape)`: 加载MobileNet模型,其中`weights="imagenet"`表示使用ImageNet预训练权重,`include_top=False`表示不包括顶层全连接层,`input_shape`表示输入图像的大小。 2. `base_model.trainable = False`: 将MobileNet模型的参数冻结,不参与训练。 3. `inputs = keras.Input(shape=input_shape)`: 定义输入张量。 4. `x = base_model(inputs, training=False)`: 将输入张量通过MobileNet模型得到特征张量。 5. `x = tf.keras.layers.GlobalAveragePooling2D()(x)`: 对特征张量进行全局平均池化操作。 6. `x = tf.keras.layers.Dropout(0.2)(x)`: 对全局平均池化后的特征张量进行Dropout操作。 7. `x = tf.keras.layers.Dense(len(categories), activation="softmax")(x)`: 添加一个全连接层,输出类别概率。 8. `model = keras.Model(inputs=inputs, outputs=x, name="LeafDisease_MobileNet")`: 将输入张量和输出张量封装成一个模型。 9. `weight_path = os.path.join(base_dir, 'checkpoints', 'my_checkpoint')`: 定义权重文件路径。 10. `model.load_weights(weight_path)`: 加载预训练好的权重。 11. `img = plt.imread(img_path)`: 读取待分类的图像。 12. `img = img / 255.`: 将图像像素值从[0,255]归一化到[0,1]。 13. `img = cv2.resize(img, (224, 224))`: 将图像缩放到MobileNet模型能够接受的大小。 14. `img = img.reshape(-1, 224, 224, 3)`: 将图像变形为模型需要的4维张量。 15. `img.astype('float32')`: 将图像数据类型转换为float32类型。 16. `result = model.predict(img)`: 对图像进行预测,得到类别概率。 17. `cate_result = categories[np.argmax(result, axis=1)[0]]`: 取最大概率对应的类别,返回类别名称。其中`np.argmax(result, axis=1)`表示取每个样本预测概率最大的下标,`[0]`表示取第一个样本。

相关推荐

下面代码在tensorflow中出现了init() missing 1 required positional argument: 'cell'报错: class Model(): def init(self): self.img_seq_shape=(10,128,128,3) self.img_shape=(128,128,3) self.train_img=dataset # self.test_img=dataset_T patch = int(128 / 2 ** 4) self.disc_patch = (patch, patch, 1) self.optimizer=tf.keras.optimizers.Adam(learning_rate=0.001) self.build_generator=self.build_generator() self.build_discriminator=self.build_discriminator() self.build_discriminator.compile(loss='binary_crossentropy', optimizer=self.optimizer, metrics=['accuracy']) self.build_generator.compile(loss='binary_crossentropy', optimizer=self.optimizer) img_seq_A = Input(shape=(10,128,128,3)) #输入图片 img_B = Input(shape=self.img_shape) #目标图片 fake_B = self.build_generator(img_seq_A) #生成的伪目标图片 self.build_discriminator.trainable = False valid = self.build_discriminator([img_seq_A, fake_B]) self.combined = tf.keras.models.Model([img_seq_A, img_B], [valid, fake_B]) self.combined.compile(loss=['binary_crossentropy', 'mse'], loss_weights=[1, 100], optimizer=self.optimizer,metrics=['accuracy']) def build_generator(self): def res_net(inputs, filters): x = inputs net = conv2d(x, filters // 2, (1, 1), 1) net = conv2d(net, filters, (3, 3), 1) net = net + x # net=tf.keras.layers.LeakyReLU(0.2)(net) return net def conv2d(inputs, filters, kernel_size, strides): x = tf.keras.layers.Conv2D(filters, kernel_size, strides, 'same')(inputs) x = tf.keras.layers.BatchNormalization()(x) x = tf.keras.layers.LeakyReLU(alpha=0.2)(x) return x d0 = tf.keras.layers.Input(shape=(10, 128, 128, 3)) out= ConvRNN2D(filters=32, kernel_size=3,padding='same')(d0) out=tf.keras.layers.Conv2D(3,1,1,'same')(out) return keras.Model(inputs=d0, outputs=out) def build_discriminator(self): def d_layer(layer_input, filters, f_size=4, bn=True): d = tf.keras.layers.Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input) if bn: d = tf.keras.layers.BatchNormalization(momentum=0.8)(d) d = tf.keras.layers.LeakyReLU(alpha=0.2)(d) return d img_A = tf.keras.layers.Input(shape=(10, 128, 128, 3)) img_B = tf.keras.layers.Input(shape=(128, 128, 3)) df = 32 lstm_out = ConvRNN2D(filters=df, kernel_size=4, padding="same")(img_A) lstm_out = tf.keras.layers.LeakyReLU(alpha=0.2)(lstm_out) combined_imgs = tf.keras.layers.Concatenate(axis=-1)([lstm_out, img_B]) d1 = d_layer(combined_imgs, df)#64 d2 = d_layer(d1, df * 2)#32 d3 = d_layer(d2, df * 4)#16 d4 = d_layer(d3, df * 8)#8 validity = tf.keras.layers.Conv2D(1, kernel_size=4, strides=1, padding='same')(d4) return tf.keras.Model([img_A, img_B], validity)

import tensorflow as tf import tensorflow_hub as hub from tensorflow.keras import layers import bert import numpy as np from transformers import BertTokenizer, BertModel # 设置BERT模型的路径和参数 bert_path = "E:\\AAA\\523\\BERT-pytorch-master\\bert1.ckpt" max_seq_length = 128 train_batch_size = 32 learning_rate = 2e-5 num_train_epochs = 3 # 加载BERT模型 def create_model(): input_word_ids = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32, name="input_word_ids") input_mask = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32, name="input_mask") segment_ids = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32, name="segment_ids") bert_layer = hub.KerasLayer(bert_path, trainable=True) pooled_output, sequence_output = bert_layer([input_word_ids, input_mask, segment_ids]) output = layers.Dense(1, activation='sigmoid')(pooled_output) model = tf.keras.models.Model(inputs=[input_word_ids, input_mask, segment_ids], outputs=output) return model # 准备数据 def create_input_data(sentences, labels): tokenizer = bert.tokenization.FullTokenizer(vocab_file=bert_path + "trainer/vocab.small", do_lower_case=True) # tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') input_ids = [] input_masks = [] segment_ids = [] for sentence in sentences: tokens = tokenizer.tokenize(sentence) tokens = ["[CLS]"] + tokens + ["[SEP]"] input_id = tokenizer.convert_tokens_to_ids(tokens) input_mask = [1] * len(input_id) segment_id = [0] * len(input_id) padding_length = max_seq_length - len(input_id) input_id += [0] * padding_length input_mask += [0] * padding_length segment_id += [0] * padding_length input_ids.append(input_id) input_masks.append(input_mask) segment_ids.append(segment_id) return np.array(input_ids), np.array(input_masks), np.array(segment_ids), np.array(labels) # 加载训练数据 train_sentences = ["Example sentence 1", "Example sentence 2", ...] train_labels = [0, 1, ...] train_input_ids, train_input_masks, train_segment_ids, train_labels = create_input_data(train_sentences, train_labels) # 构建模型 model = create_model() model.compile(optimizer=tf.keras.optimizers.Adam(lr=learning_rate), loss='binary_crossentropy', metrics=['accuracy']) # 开始微调 model.fit([train_input_ids, train_input_masks, train_segment_ids], train_labels, batch_size=train_batch_size, epochs=num_train_epochs)这段代码有什么问题吗?

最新推荐

recommend-type

解决Tensorflow2.0 tf.keras.Model.load_weights() 报错处理问题

主要介绍了解决Tensorflow2.0 tf.keras.Model.load_weights() 报错处理问题,具有很好的参考价值,希望对大家有所帮助。一起跟随想过来看看吧
recommend-type

在keras中model.fit_generator()和model.fit()的区别说明

主要介绍了在keras中model.fit_generator()和model.fit()的区别说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

年终工作总结汇报PPTqytp.pptx

年终工作总结汇报PPTqytp.pptx
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这