第一段代码:import os import cv2 def decode_video(video_path, save_dir, target_num=None): ''' video_path: 待解码的视频 save_dir: 抽帧图片的保存文件夹 target_num: 抽帧的数量, 为空则解码全部帧, 默认抽全部帧 ''' if not os.path.exists(save_dir): os.makedirs(save_dir) video = cv2.VideoCapture() if not video.open(video_path): print("can not open the video") exit(1) count = 0 index = 0 frames_num = video.get(7) # 如果target_num为空就全部抽帧,不为空就抽target_num帧 if target_num is None: step = 1 print('all frame num is {}, decode all'.format(int(frames_num))) else: step = int(frames_num/target_num) print('all frame num is {}, decode sample num is {}'.format(int(frames_num), int(target_num))) while True: _, frame = video.read() if frame is None: break if count % step == 0: save_path = "{}/{:>04d}.png".format(save_dir, index) cv2.imwrite(save_path, frame) index += 1 count += 1 if index == frames_num and target_num is None: # 如果全部抽,抽到所有帧的最后一帧就停止 break elif index == target_num and target_num is not None: # 如果采样抽,抽到target_num就停止 break else: pass video.release() if __name__ == '__main__': video_path = './test.mp4' save_dir_1 = './images_all' save_dir_2 = './images_sample' decode_video(video_path, save_dir_1) decode_video(video_path, save_dir_2, 20)

时间: 2024-02-14 11:27:45 浏览: 24
这是一个用于解码视频并抽取帧的代码。它使用了OpenCV库来处理视频文件。代码的主要功能是将视频文件解码并将抽取的帧保存为图像文件。 代码中的`decode_video`函数接受三个参数:`video_path`表示待解码的视频文件路径,`save_dir`表示抽帧图片的保存文件夹路径,`target_num`表示抽取的帧数量(可选参数,默认为None,即抽取全部帧)。 首先,代码会检查保存文件夹路径是否存在,如果不存在,则创建该文件夹。然后,通过`cv2.VideoCapture()`函数打开视频文件,并检查是否成功打开。如果无法打开视频文件,则输出错误信息并退出。 接下来,代码会初始化一些变量,包括计数器`count`、帧索引`index`以及视频的总帧数`frames_num`。根据`target_num`的值,代码会确定每隔多少帧抽取一帧,并输出相应的提示信息。 然后,代码会开始循环读取视频的每一帧。在每一次循环中,判断当前帧是否为空。如果为空,则说明已经读取完所有帧,循环结束。否则,根据计数器的值判断是否抽取当前帧,并将抽取的帧保存为图像文件。同时更新计数器和帧索引。 最后,根据抽取的帧数量和目标数量的关系,决定是否终止循环。当抽取全部帧时,如果帧索引等于总帧数,则停止循环。当采样抽取时,如果帧索引等于目标数量,则停止循环。 最后,释放视频对象的资源。 在代码的主程序部分,给定了一个测试视频文件路径`video_path`和两个保存文件夹路径`save_dir_1`和`save_dir_2`。分别调用了`decode_video`函数来进行全部帧抽取和采样抽取(抽取20帧)操作。 请注意,这只是一个示例代码,你可以根据自己的需求进行修改和扩展。

相关推荐

此代码import os import numpy as np import nibabel as nib import imageio from PIL import Image def read_niifile(niifilepath): # 读取niifile文件 img = nib.load(niifilepath) # 提取niifile文件 img_fdata = img.get_fdata(dtype='float32') return img_fdata def save_fig(niifilepath, savepath, num, name): # 保存为图片 name = name.split('-')[1] filepath_seg = niifilepath + "segmentation\\" + "segmentation-" + name filepath_vol = niifilepath + "volume\\" + "volume-" + name savepath_seg = savepath + "segmentation\\" savepath_vol = savepath + "volume\\" if not os.path.exists(savepath_seg): os.makedirs(savepath_seg) if not os.path.exists(savepath_vol): os.makedirs(savepath_vol) fdata_vol = read_niifile(filepath_vol) fdata_seg = read_niifile(filepath_seg) (x, y, z) = fdata_seg.shape total = x * y for k in range(z): silce_seg = fdata_seg[:, :, k] if silce_seg.max() == 0: continue else: silce_seg = (silce_seg - silce_seg.min()) / (silce_seg.max() - silce_seg.min()) * 255 silce_seg = np.uint8(Image.fromarray(silce_seg).convert('L')) silce_seg = cv2.threshold(silce_seg, 1, 255, cv2.THRESH_BINARY)[1] if (np.sum(silce_seg == 255) / total) > 0.015: silce_vol = fdata_vol[:, :, k] silce_vol = (silce_vol - silce_vol.min()) / (silce_vol.max() - silce_vol.min()) * 255 silce_vol = np.uint8(Image.fromarray(silce_vol).convert('L')) imageio.imwrite(os.path.join(savepath_seg, '{}.png'.format(num)), silce_seg) imageio.imwrite(os.path.join(savepath_vol, '{}.png'.format(num)), silce_vol) num += 1 return num if __name__ == '__main__': path = 'C:\Users\Administrator\Desktop\LiTS2017' savepath = 'C:\Users\Administrator\Desktop\2D-LiTS2017' filenames = os.listdir(path + "segmentation") num = 0 for filename in filenames: num = save_fig(path, savepath, num, filename)出现SyntaxError: (unicode error) 'unicodeescape' codec can't decode bytes in position 2-3: truncated \UXXXXXXXX escape,请修改它,给出完整代码

最新推荐

recommend-type

新建文本文档.txt

新建文本文档
recommend-type

开源Git gui工具Fork

开源Git gui工具Fork,CSDN能找到教程,但是资料不多,推荐用Tortoise
recommend-type

yolov5在华为昇腾atlas上加速推理

该资源为yolov5在华为昇腾atlas上使用Ascend310芯片加速推理,属于c++后端开发,适合C++开发者在华为昇腾盒子上移植深度学习算法的博主们。 资源是demo形式,包含完整的一套代码,还有转好的离线模型文件和跑出的测试结果图片。
recommend-type

C++ 实现贪吃蛇小游戏

C++贪吃蛇小游戏简介 内容概要 C++贪吃蛇小游戏是一款经典的2D游戏,它利用C++编程语言结合基本的图形库(如NCurses库或SDL库)实现。游戏的核心玩法包括控制贪吃蛇在封闭的场地内移动,通过吃掉随机出现的食物来增长身体长度,同时避免碰到场地边界或自己的身体,否则游戏结束。游戏界面简洁直观,通过键盘控制贪吃蛇的方向,提供流畅的游戏体验。 适用人群 C++贪吃蛇小游戏适用于广泛的人群,特别是: C++编程学习者:对于正在学习C++编程的学生或爱好者,这款小游戏是一个很好的实践项目。通过实现游戏,可以加深对C++语法、数据结构、面向对象编程等知识点的理解和应用。 使用场景及目标 C++贪吃蛇小游戏可以在以下场景中使用,并达到以下目标: 编程教学实践:在编程教学课堂上,教师可以使用该游戏作为案例,引导学生完成项目的开发。通过实践,学生可以更好地掌握C++编程技能,并将理论知识应用于实际项目中。 个人项目实践:对于个人学习者,实现贪吃蛇小游戏可以作为自我挑战和实践的机会。通过独立完成项目,可以提升自己的编程能力和解决问题的能力。
recommend-type

ec616DataSheet

移芯NBIOT 芯片,NB芯片,水表电表芯片,烟感 地磁芯片 超弱信号环境业务能力。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。