for circle in circles[0]: if (circle[2] >= 100): continue # 圆的基本信息 print('半径为', circle[2]) # 坐标行列 x = int(circle[0]) y = int(circle[1]) # 半径 r = int(circle[2]) # 在原图用指定颜色标记出圆的位置 img = cv2.circle(img, (x, y), r, (0, 0, 255), -1)
时间: 2024-04-17 14:23:54 浏览: 116
这段代码的作用是在给定的图像上绘制圆形,并根据圆的半径判断是否继续处理。如果圆的半径大于等于100,则跳过该圆的处理。否则,打印圆的半径,并在原图上用指定颜色标记出圆的位置。
变量`circles`是一个包含圆形信息的列表,`circles[0]`表示第一个元素,即第一个圆。
代码使用`cv2.circle()`函数在图像`img`上绘制圆形。函数的参数包括圆心坐标`(x, y)`、半径`r`、颜色`(0, 0, 255)`(蓝色,以BGR格式表示)、线宽度`-1`(表示填充整个圆)。绘制后的图像保存在变量`img`中。
相关问题
能给一个完整的实例吗,比方说以下python代码:import cv2 import numpy as np # 加载图像 image = cv2.imread("/root/camera/test/v4l2_cap.jpg") # 查看图像中是否存在蓝色和红色 blue_pixels = np.sum(image[:, :, 0]) # 蓝色通道 red_pixels = np.sum(image[:, :, 2]) # 红色通道 colors = "0" if blue_pixels > red_pixels: color = "Blue" elif blue_pixels < red_pixels: color = "Red" else: color = "None" # 将图像转换为灰度图像 gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 边缘增强 enhanced_image = cv2.Canny(gray_image, 33, 45) # 形态学操作(腐蚀和膨胀) kernel = np.ones((3, 3), np.uint8) edges1 = cv2.dilate(enhanced_image, kernel, iterations=3) # 在灰度图像中检测圆形 circles = cv2.HoughCircles(edges1, cv2.HOUGH_GRADIENT, dp=1, minDist=100, param1=66, param2=25, minRadius=90, maxRadius=185) shape="" if circles is not None: # 在原始图像上绘制检测到的圆 circles = np.uint16(np.around(circles)) for circle in circles[0, :]: x, y, radius = circle[0], circle[1], circle[2] if abs(x - image.shape[1] // 2) > 100: continue shape = "Circle" cv2.circle(image, (x, y), 90, (0, 255, 0), 2) cv2.circle(image, (x, y), 2, (0, 0, 255), 3) else: shape = "None" # 判断是否同时出现 Rectangle 和 Triangle以及颜色是否有红,绿 if color == "Red" and shape != "Circle" : result = 'r' elif color == "Blue" and shape == "Circle" : result = 'b' else: result = 'n' # 打印检测到的形状、颜色 #print(f"Color:{color}") #print(f"shape:{shape}") print(f"Result: {result}") #cv2.imshow("enhanced_image", enhanced_image) #cv2.imshow("edges1", edges1) #cv2.imshow("Image", image) #cv2.waitKey(0) #cv2.destroyAllWindows()
下面是将你提供的Python代码转换为Cython的示例:
```python
import cv2
import numpy as np
cdef extern from "opencv2/core/core_c.h":
void* cvLoadImage(const char* filename, int flags)
cdef extern from "opencv2/highgui/highgui_c.h":
void cvShowImage(const char* name, void* image)
void cvWaitKey(int delay)
void cvDestroyAllWindows()
cdef extern from "opencv2/imgproc/imgproc_c.h":
void cvCvtColor(void* src, void* dst, int code)
void cvCanny(void* image, void* edges, double threshold1, double threshold2)
void cvDilate(void* src, void* dst, void* kernel, int iterations)
void cvHoughCircles(void* image, void* circles, int method, double dp, double minDist,
double param1, double param2, int minRadius, int maxRadius)
void cvCircle(void* img, void* center, int radius, void* color, int thickness)
def detect_shape_and_color():
cdef np.ndarray[np.uint8_t, ndim=3] image = np.zeros((480, 640, 3), dtype=np.uint8)
cdef np.ndarray[np.uint8_t, ndim=2] gray_image = np.zeros((480, 640), dtype=np.uint8)
cdef np.ndarray[np.uint8_t, ndim=2] enhanced_image = np.zeros((480, 640), dtype=np.uint8)
cdef np.ndarray[np.uint8_t, ndim=2] edges = np.zeros((480, 640), dtype=np.uint8)
cdef np.ndarray[np.float32_t, ndim=3] circles = np.zeros((1, 1, 3), dtype=np.float32)
cdef np.ndarray[np.uint8_t, ndim=3] color = np.zeros((1, 1, 3), dtype=np.uint8)
# 加载图像
image = cv2.imread(b"/root/camera/test/v4l2_cap.jpg", -1)
# 查看图像中是否存在蓝色和红色
blue_pixels = np.sum(image[:, :, 0]) # 蓝色通道
red_pixels = np.sum(image[:, :, 2]) # 红色通道
colors = "0"
if blue_pixels > red_pixels:
color = "Blue"
elif blue_pixels < red_pixels:
color = "Red"
else:
color = "None"
# 将图像转换为灰度图像
cvCvtColor(image, gray_image, cv2.COLOR_BGR2GRAY)
# 边缘增强
cvCanny(gray_image, edges, 33, 45)
# 形态学操作(腐蚀和膨胀)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
cvDilate(edges, enhanced_image, kernel, 3)
# 在灰度图像中检测圆形
cvHoughCircles(enhanced_image, circles, cv2.HOUGH_GRADIENT, 1, 100, 66, 25, 90, 185)
shape = ""
if circles is not None:
# 在原始图像上绘制检测到的圆
circles = np.uint16(np.around(circles))
for circle in circles[0, :]:
x, y, radius = circle[0], circle[1], circle[2]
if abs(x - image.shape[1] // 2) > 100:
continue
shape = "Circle"
cvCircle(image, (x, y), 90, (0, 255, 0), 2)
cvCircle(image, (x, y), 2, (0, 0, 255), 3)
else:
shape = "None"
# 判断是否同时出现 Rectangle 和 Triangle以及颜色是否有红,绿
if color == "Red" and shape != "Circle":
result = 'r'
elif color == "Blue" and shape == "Circle":
result = 'b'
else:
result = 'n'
# 打印检测到的形状、颜色
print(f"Result: {result}")
#cv2.imshow("enhanced_image", enhanced_image)
#cv2.imshow("edges", edges)
#cv2.imshow("Image", image)
#cv2.waitKey(0)
#cv2.destroyAllWindows()
if __name__ == "__main__":
detect_shape_and_color()
```
请注意,上述代码中使用了Cython的类型注释来声明变量类型,以提高性能。还添加了Cython所需的C函数声明和转换函数。
在使用Cython之前,确保已按照之前提到的步骤安装了Cython并正确配置了环境。然后,将上述代码保存到一个.pyx文件中,并创建一个适当的setup.py文件来构建和编译Cython代码。
希望这个示例能够帮助你了解如何使用Cython将Python代码转换为C代码。如果有任何问题,请随时提问!
def detect_object(self): h, w, n = self.cv_image.shape # 获取原始图片尺寸 crop_norm = [[0.0, 0.7], [0.0, 0.7]] # 设定截取比例,上下:0~20%,左右0~60% h_start = int(np.floor(h * crop_norm[0][0])) h_end = int(np.ceil(h * crop_norm[0][1])) w_start = int(np.floor(w * crop_norm[1][0])) w_end = int(np.ceil(w * crop_norm[1][1])) img_tl = self.cv_image[h_start:h_end, w_start:w_end, :] # 获得交通灯所在区域图像 gray = cv2.cvtColor(img_tl, cv2.COLOR_BGR2GRAY) # 霍夫圆检测: circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 3, 15, param1=120, param2=50, minRadius=10, maxRadius=15) if circles is not None: circles1 = np.uint16(np.around(circles)) # 数据转化为整数 for circle in circles1[0, :]: # 圆心靠近边界防止坐标成为负数,适当扩大范围 if circle[0] < circle[2]: circle[0] = circle[2] if circle[1] < circle[2]: circle[1] = circle[2] cv2.circle(self.cv_image, (circle[0], circle[1]), 40, (0, 0, 255)) roi = self.cv_image[(circle[1] - circle[2]):(circle[1] + circle[2]), (circle[0] - circle[2]):(circle[0] + circle[2])] # 检测颜色 r = self.detectColor(roi) self.result += r帮我看着
根据你的代码,你正在对一个图像进行交通灯检测。首先,你从原始图像中截取出交通灯所在的区域图像。然后,你将该区域图像转换为灰度图像,并使用cv2.HoughCircles函数进行霍夫圆检测,以找到圆形的交通灯。
在找到圆形交通灯后,你使用cv2.circle函数在原始图像中绘制一个红色的圆形标记。然后,你将圆形区域作为兴趣区域(roi),传递给self.detectColor方法进行颜色检测。最后,将颜色检测的结果添加到self.result变量中。
如果你想我帮你检查代码是否有问题,请提供self.detectColor方法的实现代码。
阅读全文