编写LCSS轨迹相似度算法
时间: 2023-11-26 08:48:03 浏览: 130
一种基于改进LCSS的相似轨迹提取方法.docx
LCSS(最长公共子序列)是一种常见的轨迹相似度算法,可以用于计算两个轨迹之间的相似度。下面是一个简单的Python实现:
```python
def LCSS_distance(s1, s2, threshold):
m, n = len(s1), len(s2)
dp = [[0] * (n + 1) for _ in range(m + 1)]
for i in range(1, m + 1):
for j in range(1, n + 1):
if abs(s1[i - 1] - s2[j - 1]) <= threshold:
dp[i][j] = dp[i - 1][j - 1] + 1
else:
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
return dp[m][n]
```
其中,s1和s2是两个轨迹,threshold是一个阈值,用于判断两个位置点之间的距离是否相似。该算法的时间复杂度为O(mn),其中m和n分别是两个轨迹的长度。
阅读全文