c语言高斯消元法解方程
时间: 2023-10-19 11:08:59 浏览: 89
用高斯消元法解线性方程组(C语言)
5星 · 资源好评率100%
为了使用高斯消元法解方程,首先需要将方程组转化为增广矩阵的形式。然后,通过一系列行变换,将增广矩阵化简为上三角矩阵,最后可通过回代求解得到方程组的解。
下面是使用C语言实现高斯消元法解方程的代码示例:
```c
#include <stdio.h>
#define N 3 // 方程组的个数
void gaussianElimination(float matrix[N][N + 1], float result[N]) {
int i, j, k;
// 将增广矩阵化为上三角矩阵
for (i = 0; i < N - 1; i++) {
for (j = i + 1; j < N; j++) {
float ratio = matrix[j][i] / matrix[i][i];
for (k = i; k < N + 1; k++) {
matrix[j][k] -= ratio * matrix[i][k];
}
}
}
// 回代求解
for (i = N - 1; i >= 0; i--) {
result[i] = matrix[i][N];
for (j = N - 1; j > i; j--) {
result[i] -= matrix[i][j] * result[j]; }
result[i] /= matrix[i][i];
}
}
int main() {
float matrix[N][N + 1] = {{2, -3, 1, 4}, {3, 2, -5, -7}, {1, -2, 1, 3}};
float result[N];
int i;
gaussianElimination(matrix, result);
printf("方程组的解为:\n");
for (i = 0; i < N; i++) {
printf("x%d = %.2f\n", i+1, result[i]);
}
return 0;
}
```
在这段代码中,我们假定方程组的个数为3(N=3),并使用一个3x4的增广矩阵来存储方程组的系数和右侧的常数。通过调用`gaussianElimination`函数,可以得到方程组的解。
阅读全文