yolov7检测输出xml格式文件
时间: 2023-11-21 07:04:05 浏览: 172
你可以使用以下代码将YOLOv7检测的输出转换为XML格式的文件:
```python
import xml.etree.ElementTree as ET
import numpy as np
def create_xml(image_name, detections, save_path):
root = ET.Element("annotation")
folder = ET.SubElement(root, "folder")
folder.text = "images"
filename = ET.SubElement(root, "filename")
filename.text = image_name
size = ET.SubElement(root, "size")
width = ET.SubElement(size, "width")
height = ET.SubElement(size, "height")
depth = ET.SubElement(size, "depth")
width.text = str(detections.shape[1])
height.text = str(detections.shape[0])
depth.text = str(detections.shape[2])
for detection in detections:
object_elem = ET.SubElement(root, "object")
name = ET.SubElement(object_elem, "name")
name.text = detection[0]
bndbox = ET.SubElement(object_elem, "bndbox")
xmin = ET.SubElement(bndbox, "xmin")
ymin = ET.SubElement(bndbox, "ymin")
xmax = ET.SubElement(bndbox, "xmax")
ymax = ET.SubElement(bndbox, "ymax")
xmin.text = str(int(detection[1]))
ymin.text = str(int(detection[2]))
xmax.text = str(int(detection[3]))
ymax.text = str(int(detection[4]))
tree = ET.ElementTree(root)
tree.write(save_path)
# 示例用法
image_name = "example.jpg"
detections = np.array([["person", 100, 200, 300, 400], ["car", 50, 60, 200, 150]])
save_path = "output.xml"
create_xml(image_name, detections, save_path)
```
在上面的示例代码中,`detections` 是一个形状为 (N, 5) 的numpy数组,其中N表示检测到的物体数量。每个检测由类别名称、边界框的左上角坐标(xmin,ymin)和右下角坐标(xmax,ymax)组成。你可以根据自己的需求修改代码以适应YOLOv7模型的输出格式。
阅读全文