for i, (data, label) in enumerate(train_loader): data = data.squeeze(axis=0) data = data.squeeze(axis=0) data = np.array(data) data[0, :], data[27, :], data[:, 0], data[:, 27] = 1, 1, 1, 1
时间: 2023-08-01 11:09:19 浏览: 197
这段代码使用一个迭代器 `train_loader` 遍历训练数据集。在每次迭代中,它从 `train_loader` 中获取一个样本,包括 `data` 和 `label`。然后,它对 `data` 进行了一系列操作。
首先,`data` 被使用 `squeeze` 函数压缩了两次,将维度为 1 的维度压缩掉,使得 `data` 变为一个三维数组。
然后,`data` 被转换为了一个 numpy 数组,使用 `np.array(data)`。
最后,对 `data` 进行了一些赋值操作。`data[0, :]` 将第一行的所有元素赋值为 1,`data[27, :]` 将第 27 行的所有元素赋值为 1,`data[:, 0]` 将第一列的所有元素赋值为 1,`data[:, 27]` 将第 27 列的所有元素赋值为 1。
这些操作会改变 `data` 数组中的部分元素的值,但具体的效果需要根据实际情况和数据集的内容来确定。
相关问题
使用pytorch写一段代码:以Minst作为训练集测试集,以胶囊网络作为模型,最后添加准确率,损失率和混淆矩阵热图
以下是使用PyTorch实现的胶囊网络模型,以及训练和测试代码,包括准确率、损失率和混淆矩阵热图的计算和可视化:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import numpy as np
# 定义胶囊网络模型
class CapsuleNet(nn.Module):
def __init__(self):
super(CapsuleNet, self).__init__()
self.conv1 = nn.Conv2d(1, 256, kernel_size=9)
self.primary_capsules = PrimaryCapsules()
self.digit_capsules = DigitCapsules()
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.primary_capsules(x)
x = self.digit_capsules(x)
return x
class PrimaryCapsules(nn.Module):
def __init__(self):
super(PrimaryCapsules, self).__init__()
self.conv2 = nn.Conv2d(256, 32*8, kernel_size=9, stride=2, padding=0)
def forward(self, x):
x = self.conv2(x)
x = x.view(x.size(0), 32, -1)
x = self.squash(x)
return x
def squash(self, x):
norm = x.norm(dim=-1, keepdim=True)
x = x / (1 + norm**2) * norm
return x
class DigitCapsules(nn.Module):
def __init__(self):
super(DigitCapsules, self).__init__()
self.W = nn.Parameter(torch.randn(10, 32, 16*6*6))
self.num_iterations = 3
def forward(self, x):
x = x[:, :, None, :]
u_hat = torch.matmul(self.W, x)
b = torch.zeros(u_hat.size(0), 10, 16, 1)
if x.is_cuda:
b = b.cuda()
for i in range(self.num_iterations):
c = F.softmax(b, dim=1)
s = (c * u_hat).sum(dim=-1, keepdim=True)
v = self.squash(s)
if i < self.num_iterations - 1:
b = b + (u_hat * v).sum(dim=-1, keepdim=True)
return v.squeeze()
def squash(self, x):
norm = x.norm(dim=-1, keepdim=True)
x = x / (1 + norm**2) * norm
return x
# 加载数据集
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transform, download=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=True)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练模型
def train(model, train_loader, criterion, optimizer, epoch):
model.train()
train_loss = 0
correct = 0
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
train_loss /= len(train_loader.dataset)
accuracy = 100. * correct / len(train_loader.dataset)
print('Epoch: {} Train set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format(
epoch, train_loss, correct, len(train_loader.dataset), accuracy))
return train_loss, accuracy
# 测试模型
def test(model, test_loader, criterion):
model.eval()
test_loss = 0
correct = 0
y_true = []
y_pred = []
with torch.no_grad():
for data, target in test_loader:
output = model(data)
test_loss += criterion(output, target).item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
y_true.extend(target.tolist())
y_pred.extend(pred.view(-1).tolist())
test_loss /= len(test_loader.dataset)
accuracy = 100. * correct / len(test_loader.dataset)
print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format(
test_loss, correct, len(test_loader.dataset), accuracy))
conf_mat = confusion_matrix(y_true, y_pred)
return test_loss, accuracy, conf_mat
# 训练和测试模型
model = CapsuleNet()
train_losses = []
train_accuracies = []
test_losses = []
test_accuracies = []
conf_matrices = []
for epoch in range(1, 11):
train_loss, train_accuracy = train(model, train_loader, criterion, optimizer, epoch)
test_loss, test_accuracy, conf_mat = test(model, test_loader, criterion)
train_losses.append(train_loss)
train_accuracies.append(train_accuracy)
test_losses.append(test_loss)
test_accuracies.append(test_accuracy)
conf_matrices.append(conf_mat)
# 绘制准确率和损失率曲线
plt.figure()
plt.plot(range(1, 11), train_losses, 'bo-', label='Training loss')
plt.plot(range(1, 11), test_losses, 'ro-', label='Test loss')
plt.legend()
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training and Test Loss')
plt.show()
plt.figure()
plt.plot(range(1, 11), train_accuracies, 'bo-', label='Training accuracy')
plt.plot(range(1, 11), test_accuracies, 'ro-', label='Test accuracy')
plt.legend()
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.title('Training and Test Accuracy')
plt.show()
# 绘制混淆矩阵热图
for i in range(10):
conf_matrix = conf_matrices[i]
conf_matrix = conf_matrix / conf_matrix.sum(axis=1, keepdims=True)
plt.figure()
plt.imshow(conf_matrix, cmap='Blues', vmin=0, vmax=1)
plt.colorbar()
plt.xticks(range(10))
plt.yticks(range(10))
plt.xlabel('Predicted label')
plt.ylabel('True label')
plt.title('Confusion Matrix (Epoch {})'.format(i+1))
plt.show()
```
上述代码实现了胶囊网络模型的训练和测试,包括准确率、损失率和混淆矩阵热图的计算和可视化。其中,胶囊网络模型使用PyTorch实现,数据集使用了MNIST,并且使用了Adam优化器和交叉熵损失函数。训练过程中,每个epoch都会输出训练集的平均损失和准确率,测试集的平均损失、准确率和混淆矩阵,然后绘制准确率和损失率曲线以及混淆矩阵热图。
阅读全文