for i, (data, label) in enumerate(train_loader): data = data.squeeze(axis=0) data = data.squeeze(axis=0) data = np.array(data) data[0, :], data[27, :], data[:, 0], data[:, 27] = 1, 1, 1, 1

时间: 2023-08-01 17:09:19 浏览: 184
这段代码使用一个迭代器 `train_loader` 遍历训练数据集。在每次迭代中,它从 `train_loader` 中获取一个样本,包括 `data` 和 `label`。然后,它对 `data` 进行了一系列操作。 首先,`data` 被使用 `squeeze` 函数压缩了两次,将维度为 1 的维度压缩掉,使得 `data` 变为一个三维数组。 然后,`data` 被转换为了一个 numpy 数组,使用 `np.array(data)`。 最后,对 `data` 进行了一些赋值操作。`data[0, :]` 将第一行的所有元素赋值为 1,`data[27, :]` 将第 27 行的所有元素赋值为 1,`data[:, 0]` 将第一列的所有元素赋值为 1,`data[:, 27]` 将第 27 列的所有元素赋值为 1。 这些操作会改变 `data` 数组中的部分元素的值,但具体的效果需要根据实际情况和数据集的内容来确定。
相关问题

for _step, input_data in enumerate(train_loader): 而train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True, num_workers=0),会循环多少次

根据代码中提供的信息,train_loader 是一个 DataLoader 对象,其参数 batch_size 为 64,shuffle 为 True,num_workers 为 0,即使用当前进程加载数据。因此,train_loader 每次会将 train_dataset 中的 64 个样本打包成一个 batch,并且随机打乱样本顺序。如果 train_dataset 中的样本数量不足 64 个,那么 train_loader 最后几个 batch 的大小会小于 64。由于在循环中使用了 enumerate 函数,因此 _step 会记录当前循环的次数,即 train_loader 会循环 train_dataset 中的所有样本,直到遍历完整个数据集为止。因此,train_loader 会循环的次数为 train_dataset 中样本数量除以 batch_size 的上取整值,即 ceil(len(train_dataset) / batch_size)。

for batch_idx, (data, target) in enumerate(self.train_loader): data = data[..., :self.args.input_dim] label = target[..., :self.args.output_dim] # (..., 1) self.optimizer.zero_grad() #teacher_forcing for RNN encoder-decoder model #if teacher_forcing_ratio = 1: use label as input in the decoder for all steps if self.args.teacher_forcing: global_step = (epoch - 1) * self.train_per_epoch + batch_idx teacher_forcing_ratio = self._compute_sampling_threshold(global_step, self.args.tf_decay_steps) else: teacher_forcing_ratio = 1. # data and target shape: B, T, N, F; output shape: B, T, N, F data, target维度均为64,12,307,1 output = self.model(data, target, teacher_forcing_ratio=teacher_forcing_ratio) if self.args.real_value: label = self.scaler.inverse_transform(label) loss = self.loss(output, label) loss.backward() # add max grad clipping if self.args.grad_norm: torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args.max_grad_norm) self.optimizer.step() total_loss += loss.item()

这段代码是一个训练循环的一部分,用于对批次数据进行训练。代码中使用`enumerate(self.train_loader)`来遍历训练数据集,并在每个批次中进行以下操作: 1. 首先,通过`data[..., :self.args.input_dim]`和`target[..., :self.args.output_dim]`对输入数据和标签进行切片,以获取指定维度的子集。这是为了确保输入和标签的维度匹配。 2. 然后,调用`self.optimizer.zero_grad()`来清零模型参数的梯度。 3. 接下来,根据`self.args.teacher_forcing`的值来确定是否使用"teacher forcing"的方法。如果`self.args.teacher_forcing`为真,则计算当前批次的全局步数,并使用`self._compute_sampling_threshold()`方法计算出"teacher forcing"的比例。否则,将"teacher forcing"比例设置为1.0,表示在解码器中的所有步骤都使用标签作为输入。 4. 调用`self.model(data, target, teacher_forcing_ratio=teacher_forcing_ratio)`来获取模型的输出。如果`self.args.real_value`为真,则通过`self.scaler.inverse_transform(label)`将标签逆转换为原始值。 5. 计算模型输出和标签之间的损失,并将损失值添加到总损失`total_loss`中。 6. 调用`loss.backward()`计算梯度,并使用`torch.nn.utils.clip_grad_norm_()`对梯度进行最大梯度裁剪。 7. 最后,调用`self.optimizer.step()`来更新模型参数。 这个循环会遍历整个训练数据集,并在每个批次中计算和更新模型的损失。
阅读全文

相关推荐

def train(model, train_loader, criterion, optimizer): model.train() train_loss = 0.0 train_acc = 0.0 for i, (inputs, labels) in enumerate(train_loader): optimizer.zero_grad() outputs = model(inputs.unsqueeze(1).float()) loss = criterion(outputs, labels.long()) loss.backward() optimizer.step() train_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) train_acc += torch.sum(preds == labels.data) train_loss = train_loss / len(train_loader.dataset) train_acc = train_acc.double() / len(train_loader.dataset) return train_loss, train_acc def test(model, verify_loader, criterion): model.eval() test_loss = 0.0 test_acc = 0.0 with torch.no_grad(): for i, (inputs, labels) in enumerate(test_loader): outputs = model(inputs.unsqueeze(1).float()) loss = criterion(outputs, labels.long()) test_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) test_acc += torch.sum(preds == labels.data) test_loss = test_loss / len(test_loader.dataset) test_acc = test_acc.double() / len(test_loader.dataset) return test_loss, test_acc # Instantiate the model model = CNN() # Define the loss function and optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # Instantiate the data loaders train_dataset = MyDataset1('1MATRICE') train_loader = DataLoader(train_dataset, batch_size=5, shuffle=True) test_dataset = MyDataset2('2MATRICE') test_loader = DataLoader(test_dataset, batch_size=5, shuffle=False) train_losses, train_accs, test_losses, test_accs = [], [], [], [] for epoch in range(500): train_loss, train_acc = train(model, train_loader, criterion, optimizer) test_loss, test_acc = test(model, test_loader, criterion) train_losses.append(train_loss) train_accs.append(train_acc) test_losses.append(test_loss) test_accs.append(test_acc) print('Epoch: {} Train Loss: {:.4f} Train Acc: {:.4f} Test Loss: {:.4f} Test Acc: {:.4f}'.format( epoch, train_loss, train_acc, test_loss, test_acc))

检查一下:import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, TensorDataset from sklearn.metrics import roc_auc_score # 定义神经网络模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(10, 64) self.fc2 = nn.Linear(64, 32) self.fc3 = nn.Linear(32, 1) self.sigmoid = nn.Sigmoid() def forward(self, x): x = self.fc1(x) x = nn.functional.relu(x) x = self.fc2(x) x = nn.functional.relu(x) x = self.fc3(x) x = self.sigmoid(x) return x # 加载数据集 data = torch.load('data.pt') x_train, y_train, x_test, y_test = data train_dataset = TensorDataset(x_train, y_train) train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True) test_dataset = TensorDataset(x_test, y_test) test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False) # 定义损失函数和优化器 criterion = nn.BCELoss() optimizer = optim.Adam(net.parameters(), lr=0.01) # 训练模型 net = Net() for epoch in range(10): running_loss = 0.0 for i, data in enumerate(train_loader): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() # 在测试集上计算AUC y_pred = [] y_true = [] with torch.no_grad(): for data in test_loader: inputs, labels = data outputs = net(inputs) y_pred += outputs.tolist() y_true += labels.tolist() auc = roc_auc_score(y_true, y_pred) print('Epoch %d, loss: %.3f, test AUC: %.3f' % (epoch + 1, running_loss / len(train_loader), auc))

import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, Dataset class ConvNet(nn.Module): def __init__(self): super(ConvNet, self).__init__() self.conv1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=3, stride=1, padding=1) self.relu = nn.ReLU() self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.fc1 = nn.Linear(32 * 14 * 14, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = self.relu(x) x = self.pool(x) x = x.view(-1, 32 * 14 * 14) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) return x class MyDataset(Dataset): def __init__(self, data, target): self.data = data self.target = target def __getitem__(self, index): x = self.data[index] y = self.target[index] return x, y def __len__(self): return len(self.data) # 定义一些超参数 batch_size = 32 learning_rate = 0.001 epochs = 10 # 加载数据集 train_data = torch.randn(1000, 1, 28, 28) print(train_data) train_target = torch.randint(0, 10, (1000,)) print(train_target) train_dataset = MyDataset(train_data, train_target) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) # 构建模型 model = ConvNet() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) # 训练模型 for epoch in range(epochs): for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() if batch_idx % 10 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) # 保存模型 # torch.save(model.state_dict(), 'convnet.pth')

pytorch部分代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(0,1)) batch_m = batch_m.view((-1, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True,drop_last=True) test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=True) cls_num_list = np.zeros(classes) for , label in train_loader.dataset: cls_num_list[label] += 1 criterion_train = LDAMLoss(cls_num_list=cls_num_list, max_m=0.5, s=30) criterion_val = LDAMLoss(cls_num_list=cls_num_list, max_m=0.5, s=30) mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device, non_blocking=True), Variable(target).to(device,non_blocking=True) # 3、将数据输入mixup_fn生成mixup数据 samples, targets = mixup_fn(data, target) targets = torch.tensor(targets).to(torch.long) # 4、将上一步生成的数据输入model,输出预测结果,再计算loss output = model(samples) # 5、梯度清零(将loss关于weight的导数变成0) optimizer.zero_grad() # 6、若使用混合精度 if use_amp: with torch.cuda.amp.autocast(): # 开启混合精度 loss = torch.nan_to_num(criterion_train(output, targets)) # 计算loss scaler.scale(loss).backward() # 梯度放大 torch.nn.utils.clip_grad_norm(model.parameters(), CLIP_GRAD) # 梯度裁剪,防止梯度爆炸 scaler.step(optimizer) # 更新下一次迭代的scaler scaler.update() # 否则,直接反向传播求梯度 else: loss = criterion_train(output, targets) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD) optimizer.step() 报错:RuntimeError: Expected index [112, 1] to be smaller than self [16, 7] apart from dimension 1

import ast from dataclasses import dataclass from typing import List import pandas as pd import json ["text", "六十一岁还能办什么保险"] @dataclass class FAQ: title: str sim_questions: List[str] answer: str faq_id: int ori_data = pd.read_csv('baoxianzhidao_filter.csv') data = [] exist_titles = set() for index, row in enumerate(ori_data.iterrows()): row_dict = row[1] title = row_dict['title'] if title not in exist_titles: data.append(FAQ(title=title, answer=row_dict['reply'], sim_questions=[title], faq_id=index)) exist_titles.add(title) from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks pipeline_ins = pipeline(Tasks.faq_question_answering, 'damo/nlp_mgimn_faq-question-answering_chinese-base') bsz = 32 all_sentence_vecs = [] batch = [] sentence_list = [faq.title for faq in data] for i,sent in enumerate(sentence_list): batch.append(sent) if len(batch) == bsz or (i == len(sentence_list)-1 and len(batch)>0): # if i == len(sentence_list)-1 and len(batch)>0: sentence_vecs = pipeline_ins.get_sentence_embedding(batch) all_sentence_vecs.extend(sentence_vecs) batch.clear() import faiss import numpy as np hidden_size = pipeline_ins.model.network.bert.config.hidden_size # hidden_size = pipeline_ins.model.bert.config.hidden_size index = faiss.IndexFlatIP(hidden_size) vecs = np.asarray(all_sentence_vecs, dtype='float32') index.add(vecs) from modelscope.outputs import OutputKeys def ask_faq(input, history=[]): # step1: get sentence vector of query query_vec = pipeline_ins.get_sentence_embedding([input])[0] query_vec = np.asarray(query_vec, dtype='float32').reshape([1, -1]) # step2: faq dense retrieval _, indices = index.search(query_vec, k=30) # step3: build support set support_set = [] for i in indices.tolist()[0]: faq = data[i] support_set.append({"text": faq.title, "label": faq.faq_id, "index": i}) # step4: faq ranking rst = pipeline_ins(input={"query_set": input, "support_set": support_set}) rst = rst[OutputKeys.OUTPUT][0][0] pred_label = rst['label'] pred_score = rst['score'] # get answer by faq_id pred_answer = "" pred_title = "" for faq in data: if faq.faq_id == pred_label: pred_answer = faq.answer pred_title = faq.title break history.append((f'{pred_answer}|(pred_title:{pred_title},pred_score:{pred_score:.3f})')) return history优化这段代码

最新推荐

recommend-type

声发射定位算法 Matlab 仿真项目源码+文档说明(高分项目)

声发射定位算法 Matlab 仿真项目源码+文档说明(高分项目),含有代码注释,新手也可看懂,个人手打98分项目,导师非常认可的高分项目,毕业设计、期末大作业和课程设计高分必看,下载下来,简单部署,就可以使用。该项目可以直接作为毕设、期末大作业使用,代码都在里面,系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值,项目都经过严格调试,确保可以运行! 声发射定位算法 Matlab 仿真项目源码+文档说明(高分项目)声发射定位算法 Matlab 仿真项目源码+文档说明(高分项目)声发射定位算法 Matlab 仿真项目源码+文档说明(高分项目)声发射定位算法 Matlab 仿真项目源码+文档说明(高分项目)声发射定位算法 Matlab 仿真项目源码+文档说明(高分项目)声发射定位算法 Matlab 仿真项目源码+文档说明(高分项目)声发射定位算法 Matlab 仿真项目源码+文档说明(高分项目)声发射定位算法 Matlab 仿真项目源码+文档说明(高分项目)声发射定位算法 Matlab 仿真项目源码+文档说明(高分项目)声发射定位算法 Matlab 仿真项目源码+
recommend-type

Monkey测试,推包文件

monkey测试,推包文件
recommend-type

Android圆角进度条控件的设计与应用

资源摘要信息:"Android-RoundCornerProgressBar" 在Android开发领域,一个美观且实用的进度条控件对于提升用户界面的友好性和交互体验至关重要。"Android-RoundCornerProgressBar"是一个特定类型的进度条控件,它不仅提供了进度指示的常规功能,还具备了圆角视觉效果,使其更加美观且适应现代UI设计趋势。此外,该控件还可以根据需求添加图标,进一步丰富进度条的表现形式。 从技术角度出发,实现圆角进度条涉及到Android自定义控件的开发。开发者需要熟悉Android的视图绘制机制,包括但不限于自定义View类、绘制方法(如`onDraw`)、以及属性动画(Property Animation)。实现圆角效果通常会用到`Canvas`类提供的画图方法,例如`drawRoundRect`函数,来绘制具有圆角的矩形。为了添加图标,还需考虑如何在进度条内部适当地放置和绘制图标资源。 在Android Studio这一集成开发环境(IDE)中,自定义View可以通过继承`View`类或者其子类(如`ProgressBar`)来完成。开发者可以定义自己的XML布局文件来描述自定义View的属性,比如圆角的大小、颜色、进度值等。此外,还需要在Java或Kotlin代码中处理用户交互,以及进度更新的逻辑。 在Android中创建圆角进度条的步骤通常如下: 1. 创建自定义View类:继承自`View`类或`ProgressBar`类,并重写`onDraw`方法来自定义绘制逻辑。 2. 定义XML属性:在资源文件夹中定义`attrs.xml`文件,声明自定义属性,如圆角半径、进度颜色等。 3. 绘制圆角矩形:在`onDraw`方法中使用`Canvas`的`drawRoundRect`方法绘制具有圆角的进度条背景。 4. 绘制进度:利用`Paint`类设置进度条颜色和样式,并通过`drawRect`方法绘制当前进度覆盖在圆角矩形上。 5. 添加图标:根据自定义属性中的图标位置属性,在合适的时机绘制图标。 6. 通过编程方式更新进度:在Activity或Fragment中,使用自定义View的方法来编程更新进度值。 7. 实现动画:如果需要,可以通过Android的动画框架实现进度变化的动画效果。 标签中的"Android开发"表明,这些知识点和技能主要面向的是Android平台的开发人员。对于想要在Android应用中实现自定义圆角进度条的开发者来说,他们需要具备一定的Android编程基础,并熟悉相关的开发工具和库。 在"RoundCornerProgressBar-master"压缩包文件的文件名称列表中,我们可以推测这个资源包含了完整的项目代码,包括源代码、资源文件、布局文件、可能的示例代码以及必要的文档说明。开发者通过下载和解压缩这个包,可以得到一个完整的项目,从而可以直接查看代码实现细节,或是将其集成到自己的项目中。 最终,对于希望使用"Android-RoundCornerProgressBar"的开发者,关键在于理解自定义View的创建过程、圆角图形的绘制技术,以及如何在Android应用中集成和使用这些自定义控件。通过上述知识点的学习和实践,开发者能够掌握在Android应用中创建美观且功能丰富的用户界面所需的技能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【R语言lattice包实战】:从案例到技巧,图形制作不再难

![R语言数据包使用详细教程lattice](http://pfister.ee.duke.edu/images/Nguyen-arxiv11-fig2.jpg) # 1. R语言与lattice包概述 R语言作为统计分析领域内广泛应用的编程语言,凭借其强大的图形功能而受到数据科学家的青睐。在R语言中,lattice包是绘图系统的重要组成部分,它基于trellis图形系统设计,能够高效地创建多变量条件图。本章节将引导读者对lattice包有一个初步的了解,并概述其功能和应用范围。 ## 1.1 R语言中的图形系统 R语言提供了一系列的图形系统,基础图形系统(base graphics)是其
recommend-type

输入正整数n.打出长度为n的菱形

好的,以下是打印菱形的代码实现: ``` #include <stdio.h> #include <stdlib.h> int main() { int n, i, j; printf("请输入一个正整数n:"); scanf("%d", &n); if(n % 2 == 0) { // 如果输入的n是偶数,将其加1变成奇数 n++; } for(i = 0; i < n / 2 + 1; i++) { for(j = 0; j < n / 2 - i; j++) { printf(
recommend-type

mui框架实现带侧边栏的响应式布局

资源摘要信息:"mui实现简单布局.zip" mui是一个基于HTML5的前端框架,它采用了类似Bootstrap的语义化标签,但是专门为移动设备优化。该框架允许开发者使用Web技术快速构建高性能、可定制、跨平台的移动应用。此zip文件可能包含了一个用mui框架实现的简单布局示例,该布局具有侧边栏,能够实现首页内容的切换。 知识点一:mui框架基础 mui框架是一个轻量级的前端库,它提供了一套响应式布局的组件和丰富的API,便于开发者快速上手开发移动应用。mui遵循Web标准,使用HTML、CSS和JavaScript构建应用,它提供了一个类似于jQuery的轻量级库,方便DOM操作和事件处理。mui的核心在于其强大的样式表,通过CSS可以实现各种界面效果。 知识点二:mui的响应式布局 mui框架支持响应式布局,开发者可以通过其提供的标签和类来实现不同屏幕尺寸下的自适应效果。mui框架中的标签通常以“mui-”作为前缀,如mui-container用于创建一个宽度自适应的容器。mui中的布局类,比如mui-row和mui-col,用于创建灵活的栅格系统,方便开发者构建列布局。 知识点三:侧边栏实现 在mui框架中实现侧边栏可以通过多种方式,比如使用mui sidebar组件或者通过布局类来控制侧边栏的位置和宽度。通常,侧边栏会使用mui的绝对定位或者float浮动布局,与主内容区分开来,并通过JavaScript来控制其显示和隐藏。 知识点四:首页内容切换功能 实现首页可切换的功能,通常需要结合mui的JavaScript库来控制DOM元素的显示和隐藏。这可以通过mui提供的事件监听和动画效果来完成。开发者可能会使用mui的开关按钮或者tab标签等组件来实现这一功能。 知识点五:mui的文件结构 该压缩包文件包含的目录结构说明了mui项目的基本结构。其中,"index.html"文件是项目的入口文件,它将展示整个应用的界面。"manifest.json"文件是应用的清单文件,它在Web应用中起到了至关重要的作用,定义了应用的名称、版本、图标和其它配置信息。"css"文件夹包含所有样式表文件,"unpackage"文件夹可能包含了构建应用后的文件,"fonts"文件夹存放字体文件,"js"文件夹则是包含JavaScript代码的地方。 知识点六:mui的打包和分发 mui框架支持项目的打包和分发,开发者可以使用其提供的命令行工具来打包项目,生成可以部署到服务器的静态资源。这一步通常涉及到资源的压缩、合并和优化。打包后,开发者可以将项目作为一个Web应用分发,也可以将其打包为原生应用,比如通过Cordova、PhoneGap等工具打包成可在iOS或Android设备上安装的应用。 知识点七:mui的兼容性和性能优化 mui框架对老旧设备也做了兼容性考虑,保证应用在低端设备上也有较好的性能表现。性能优化方面,mui提供了多种工具和最佳实践,例如使用懒加载、避免全局变量污染、减少DOM操作等策略来提高应用的运行速度和用户体验。 以上内容是根据标题、描述以及文件名称列表推测出的关于mui实现简单布局的知识点。开发者可以通过分析和实践上述知识点来更好地理解和运用mui框架,从而构建出高效且用户友好的移动应用界面。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【交互式图形】:Shiny应用中lattice包的巧妙应用指南

![R语言数据包使用详细教程lattice](https://blog.morrisopazo.com/wp-content/uploads/Ebook-Tecnicas-de-reduccion-de-dimensionalidad-Morris-Opazo_.jpg) # 1. Shiny与lattice包基础介绍 在数据科学与统计分析的世界中,可视化是一个至关重要的环节,它能够帮助我们直观地理解数据、展示研究成果并有效地传达信息。R语言作为数据分析领域的一个重要工具,其强大的图形能力得到了广泛的认可。在R语言家族中,`lattice`包和`Shiny`应用框架尤其受到关注。本章我们将简
recommend-type

安装包部署到docker中

安装包部署到Docker容器中通常包含以下几个步骤: 1. **准备镜像**:首先,你需要有一个基础的Dockerfile,这个文件描述了如何从基础镜像创建一个新的镜像,并在其中安装所需的软件和服务。例如,你可以基于官方的`alpine`或`ubuntu`等轻量级镜像开始。 ```Dockerfile # 使用官方的Python运行时作为基础镜像 FROM python:3.8-slim # 设置工作目录 WORKDIR /app # 将应用源码复制到容器内 COPY . . # 安装依赖 RUN pip install -r requirements.txt # 暴露端口 EXP