self.layers += [nn.Linear(256, 256), nn.ReLU(inplace=True)]

时间: 2024-04-12 22:33:43 浏览: 10
这行代码是将一个具有256个输入特征和256个输出特征的全连接层(nn.Linear)和一个ReLU激活函数(nn.ReLU)添加到模型的层列表中(self.layers)。 nn.Linear(256, 256) 表示创建一个具有256个输入特征和256个输出特征的全连接层。 nn.ReLU(inplace=True) 表示创建一个ReLU激活函数,并将 inplace 参数设置为 True。这将使激活函数直接在原地修改输入张量,而不需要额外的内存。 通过将这两个层添加到模型的层列表中,你可以在模型的前向传播过程中依次应用它们。
相关问题

class ResNet18_2D(nn.Module): def __init__(self, num_classes=1000): super(ResNet18_2D, self).__init__() self.in_channels = 64 self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.LeakyReLU = nn.LeakyReLU(negative_slope=0.1) self.relu = nn.ReLU(inplace=True) self.elu = nn.ELU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(BasicBlock2D, 64, 2, stride=1) self.layer2 = self._make_layer(BasicBlock2D, 128, 2, stride=2) self.layer3 = self._make_layer(BasicBlock2D, 256, 2, stride=2) self.layer4 = self._make_layer(BasicBlock2D, 512, 2, stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 , 512) def _make_layer(self, block, out_channels, num_blocks, stride): layers = [] layers.append(block(self.in_channels, out_channels, stride)) self.in_channels = out_channels * block.expansion for _ in range(1, num_blocks): layers.append(block(self.in_channels, out_channels)) return nn.Sequential(*layers) def forward(self, x): # out = F.ReLU(self.bn1(self.conv1(x))) out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.maxpool(out) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.avgpool(out) out = out.view(out.size(0), -1) return out 在self.layer4(out)和 self.avgpool(out)之间加CBAM

要在 `self.layer4(out)` 和 `self.avgpool(out)` 之间CBAM模块,可以按照以下步骤进行修改: 首先,导入CBAM模块的相关库: ```python from cbam import CBAM ``` 然后,在ResNet18_2D类中添加CBAM模块: ```python self.cbam = CBAM(512) # 添加CBAM模块,输入通道数为512 ``` 最后,在forward方法中使用CBAM模块: ```python out = self.layer4(out) out = self.cbam(out) # 使用CBAM模块 out = self.avgpool(out) ``` 确保在使用CBAM模块之前,已经定义了CBAM类并导入相应的库。 这样,你就在ResNet18_2D模型中成功添加了CBAM模块。请注意,这仅仅是示例代码,你可能需要根据实际情况自行进行调整和修改。

为以下的每句代码做注释:class ResNet(nn.Module): def init(self, block, blocks_num, num_classes=1000, include_top=True): super(ResNet, self).init() self.include_top = include_top self.in_channel = 64 self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(self.in_channel) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, blocks_num[0]) self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2) self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2) self.layer4 = self.make_layer(block, 512, blocks_num[3], stride=2) if self.include_top: self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) # output size = (1, 1) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal(m.weight, mode='fan_out', nonlinearity='relu') def _make_layer(self, block, channel, block_num, stride=1): downsample = None if stride != 1 or self.in_channel != channel * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(channel * block.expansion)) layers = [] layers.append(block(self.in_channel, channel, downsample=downsample, stride=stride)) self.in_channel = channel * block.expansion for _ in range(1, block_num): layers.append(block(self.in_channel, channel)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) if self.include_top: x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) return x

这段代码定义了一个 ResNet 类,继承自 nn.Module 类。ResNet 是一个深度卷积神经网络模型,用于图像分类任务。下面是对代码注释的解释: - class ResNet(nn.Module): 定义了一个 ResNet 类,继承自 nn.Module 类。 - def init(self, block, blocks_num, num_classes=1000, include_top=True): ResNet 类的初始化函数,接受 block、blocks_num、num_classes 和 include_top 四个参数。其中,block 是 ResNet 中的基础模块,blocks_num 是每层中包含的基础模块数量,num_classes 是输出的分类数目,include_top 表示是否包含全连接层。 - super(ResNet, self).init() 调用父类的初始化函数。 - self.include_top = include_top 设置 include_top 属性。 - self.in_channel = 64 设置输入通道数为 64。 - self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2, padding=3, bias=False) 定义第一个卷积层,输入通道数为 3,输出通道数为 self.in_channel,卷积核大小为 7x7,步长为 2,填充为 3,不使用偏置。 - self.bn1 = nn.BatchNorm2d(self.in_channel) 定义第一个 BatchNorm2d 层,对输入进行批量归一化。 - self.relu = nn.ReLU(inplace=True) 定义 ReLU 激活函数。 - self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) 定义最大池化层,池化核大小为 3x3,步长为 2,填充为 1。 - self.layer1 = self._make_layer(block, 64, blocks_num[0]) 定义 ResNet 中的第一个残差块,包含 blocks_num[0] 个基础模块,每个基础模块的输出通道数为 64。 - self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2) 定义 ResNet 中的第二个残差块,包含 blocks_num[1] 个基础模块,每个基础模块的输出通道数为 128,步长为 2。 - self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2) 定义 ResNet 中的第三个残差块,包含 blocks_num[2] 个基础模块,每个基础模块的输出通道数为 256,步长为 2。 - self.layer4 = self.make_layer(block, 512, blocks_num[3], stride=2) 定义 ResNet 中的第四个残差块,包含 blocks_num[3] 个基础模块,每个基础模块的输出通道数为 512,步长为 2。 - if self.include_top: self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) 定义自适应平均池化层,输出大小为 (1, 1)。 - self.fc = nn.Linear(512 * block.expansion, num_classes) 定义全连接层,将输入展平后,输出大小为 num_classes。 - for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal(m.weight, mode='fan_out', nonlinearity='relu') 对 ResNet 中所有的卷积层进行权重初始化。 - def _make_layer(self, block, channel, block_num, stride=1): 定义私有函数 _make_layer,用于构建残差块。 - downsample = None 初始化 downsample 变量。 - if stride != 1 or self.in_channel != channel * block.expansion: 如果步长不为 1 或者输入通道数不等于 channel * block.expansion,则进行下采样操作。 - downsample = nn.Sequential( nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(channel * block.expansion)) 定义下采样层,包含一个卷积层和一个 BatchNorm2d 层。 - layers = [] 初始化 layers 列表。 - layers.append(block(self.in_channel, channel, downsample=downsample, stride=stride)) 将第一个基础模块加入到 layers 列表中。 - self.in_channel = channel * block.expansion 更新输入通道数。 - for _ in range(1, block_num): layers.append(block(self.in_channel, channel)) 构建剩余的基础模块,添加到 layers 列表中。 - return nn.Sequential(*layers) 将 layers 列表中的基础模块打包成一个 Sequential 层,并返回。 - def forward(self, x): 定义前向传播函数。 - x = self.conv1(x) 进行第一个卷积操作。 - x = self.bn1(x) 进行第一个 BatchNorm2d 操作。 - x = self.relu(x) 进行 ReLU 激活操作。 - x = self.maxpool(x) 进行最大池化操作。 - x = self.layer1(x) 进行第一个残差块操作。 - x = self.layer2(x) 进行第二个残差块操作。 - x = self.layer3(x) 进行第三个残差块操作。 - x = self.layer4(x) 进行第四个残差块操作。 - if self.include_top: x = self.avgpool(x) 进行自适应平均池化操作。 - x = torch.flatten(x, 1) 将输出展平。 - x = self.fc(x) 进行全连接层操作,输出分类结果。 - return x 返回分类结果。

相关推荐

最新推荐

recommend-type

新建文本文档.txt

新建文本文档
recommend-type

开源Git gui工具Fork

开源Git gui工具Fork,CSDN能找到教程,但是资料不多,推荐用Tortoise
recommend-type

yolov5在华为昇腾atlas上加速推理

该资源为yolov5在华为昇腾atlas上使用Ascend310芯片加速推理,属于c++后端开发,适合C++开发者在华为昇腾盒子上移植深度学习算法的博主们。 资源是demo形式,包含完整的一套代码,还有转好的离线模型文件和跑出的测试结果图片。
recommend-type

C++ 实现贪吃蛇小游戏

C++贪吃蛇小游戏简介 内容概要 C++贪吃蛇小游戏是一款经典的2D游戏,它利用C++编程语言结合基本的图形库(如NCurses库或SDL库)实现。游戏的核心玩法包括控制贪吃蛇在封闭的场地内移动,通过吃掉随机出现的食物来增长身体长度,同时避免碰到场地边界或自己的身体,否则游戏结束。游戏界面简洁直观,通过键盘控制贪吃蛇的方向,提供流畅的游戏体验。 适用人群 C++贪吃蛇小游戏适用于广泛的人群,特别是: C++编程学习者:对于正在学习C++编程的学生或爱好者,这款小游戏是一个很好的实践项目。通过实现游戏,可以加深对C++语法、数据结构、面向对象编程等知识点的理解和应用。 使用场景及目标 C++贪吃蛇小游戏可以在以下场景中使用,并达到以下目标: 编程教学实践:在编程教学课堂上,教师可以使用该游戏作为案例,引导学生完成项目的开发。通过实践,学生可以更好地掌握C++编程技能,并将理论知识应用于实际项目中。 个人项目实践:对于个人学习者,实现贪吃蛇小游戏可以作为自我挑战和实践的机会。通过独立完成项目,可以提升自己的编程能力和解决问题的能力。
recommend-type

ec616DataSheet

移芯NBIOT 芯片,NB芯片,水表电表芯片,烟感 地磁芯片 超弱信号环境业务能力。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。