transform.estimate_transform
时间: 2023-11-07 11:55:42 浏览: 124
transform.estimate_transform不是一个常见的方法或函数。根据提供的引用,fit_transform方法是用于特征工程处理的常见方法之一,它将原始数据集作为输入,并对数据进行转换。该方法通常用于实例化一个转换器类(transformer),并在转换器上调用fit_transform方法。fit方法用于适应(fit)转换器的参数,而transform方法用于对数据进行实际的转换。
相关问题
这段代码什么意思def run_posmap_300W_LP(bfm, image_path, mat_path, save_folder, uv_h = 256, uv_w = 256, image_h = 256, image_w = 256): # 1. load image and fitted parameters image_name = image_path.strip().split('/')[-1] image = io.imread(image_path)/255. [h, w, c] = image.shape info = sio.loadmat(mat_path) pose_para = info['Pose_Para'].T.astype(np.float32) shape_para = info['Shape_Para'].astype(np.float32) exp_para = info['Exp_Para'].astype(np.float32) # 2. generate mesh # generate shape vertices = bfm.generate_vertices(shape_para, exp_para) # transform mesh s = pose_para[-1, 0] angles = pose_para[:3, 0] t = pose_para[3:6, 0] transformed_vertices = bfm.transform_3ddfa(vertices, s, angles, t) projected_vertices = transformed_vertices.copy() # using stantard camera & orth projection as in 3DDFA image_vertices = projected_vertices.copy() image_vertices[:,1] = h - image_vertices[:,1] - 1 # 3. crop image with key points kpt = image_vertices[bfm.kpt_ind, :].astype(np.int32) left = np.min(kpt[:, 0]) right = np.max(kpt[:, 0]) top = np.min(kpt[:, 1]) bottom = np.max(kpt[:, 1]) center = np.array([right - (right - left) / 2.0, bottom - (bottom - top) / 2.0]) old_size = (right - left + bottom - top)/2 size = int(old_size*1.5) # random pertube. you can change the numbers marg = old_size*0.1 t_x = np.random.rand()*marg*2 - marg t_y = np.random.rand()*marg*2 - marg center[0] = center[0]+t_x; center[1] = center[1]+t_y size = size*(np.random.rand()*0.2 + 0.9) # crop and record the transform parameters src_pts = np.array([[center[0]-size/2, center[1]-size/2], [center[0] - size/2, center[1]+size/2], [center[0]+size/2, center[1]-size/2]]) DST_PTS = np.array([[0, 0], [0, image_h - 1], [image_w - 1, 0]]) tform = skimage.transform.estimate_transform('similarity', src_pts, DST_PTS) cropped_image = skimage.transform.warp(image, tform.inverse, output_shape=(image_h, image_w)) # transform face position(image vertices) along with 2d facial image position = image_vertices.copy() position[:, 2] = 1 position = np.dot(position, tform.params.T) position[:, 2] = image_vertices[:, 2]*tform.params[0, 0] # scale z position[:, 2] = position[:, 2] - np.min(position[:, 2]) # translate z # 4. uv position map: render position in uv space uv_position_map = mesh.render.render_colors(uv_coords, bfm.full_triangles, position, uv_h, uv_w, c = 3) # 5. save files io.imsave('{}/{}'.format(save_folder, image_name), np.squeeze(cropped_image)) np.save('{}/{}'.format(save_folder, image_name.replace('jpg', 'npy')), uv_position_map) io.imsave('{}/{}'.format(save_folder, image_name.replace('.jpg', '_posmap.jpg')), (uv_position_map)/max(image_h, image_w)) # only for show # --verify # import cv2 # uv_texture_map_rec = cv2.remap(cropped_image, uv_position_map[:,:,:2].astype(np.float32), None, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT,borderValue=(0)) # io.imsave('{}/{}'.format(save_folder, image_name.replace('.jpg', '_tex.jpg')), np.squeeze(uv_texture_map_rec))
这段代码是一个函数,用于将一张人脸图像进行三维重建并生成该人脸在二维图像上的 UV 位置图。具体步骤如下:
1. 加载人脸图像和拟合参数。
2. 生成人脸三维模型,并进行变换,得到变换后的人脸模型顶点位置。
3. 根据人脸关键点进行裁剪,得到人脸区域的图像,并记录变换参数。
4. 在 UV 空间中渲染人脸模型,并生成 UV 位置图。
5. 保存裁剪后的图像和 UV 位置图。
其中,变换参数包括旋转、平移、缩放等。UV 位置图是将人脸模型在 UV 空间中的位置映射到二维图像上的一张纹理图。
import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn import linear_model from sklearn.metrics import r2_score path = 'C:/Users/asus/Desktop/台区电量样本.xlsx' data_B = pd.read_excel(path, header=None) data_B = data_B.iloc x = data_B.iloc[:, 1:19] y = data_B.iloc[:, 0:1] #对数据进行标准化处理 scaler=StandardScaler() scaledx=scaler.fit_transform(x) #线性回归模型 method=linear_model.LinearRegression() getmodel_1=method.fit(x,y) coef_,intercept_=getmodel_1.coef_,getmodel_1.intercept_ print('回归模型的系数为: {},截距为: {}'.format(coef_,intercept_)) #用R平方检验该模型的拟合度 predict_y=getmodel_1.predict(x) R_square=r2_score(y,predict_y) print('R_square is: ',R_square) #得到的值只有0.37,说明该模型不适合预估 #如果可行,就可以预估 把上面的pyton代码转为matlab代码
你可以使用以下的MATLAB代码将上述的Python代码转换成MATLAB代码:
```matlab
path = 'C:\Users\asus\Desktop\台区电量样本.xlsx';
data_B = xlsread(path);
x = data_B(:, 2:19);
y = data_B(:, 1);
% 对数据进行标准化处理
scaledx = zscore(x);
% 线性回归模型
method = fitlm(x, y);
coef_ = method.Coefficients.Estimate(2:end);
intercept_ = method.Coefficients.Estimate(1);
fprintf('回归模型的系数为: %s, 截距为: %s\n', mat2str(coef_), num2str(intercept_));
% 用R平方检验该模型的拟合度
predict_y = predict(method, x);
R_square = 1 - sum((y - predict_y).^2) / sum((y - mean(y)).^2);
fprintf('R_square is: %f\n', R_square); % 得到的值只有0.37,说明该模型不适合预估
```
这段MATLAB代码将读取Excel文件中的数据,进行标准化处理后,使用`fitlm`函数进行线性回归建模,并计算R平方值来评估模型的拟合度。请注意,MATLAB中的索引是从1开始的,所以在取子集数据时索引需要适当调整。
阅读全文