loop = tqdm(enumerate(train_loader), total=len(train_loader), leave=False) model.train() for i, (noisy, clean) in loop: noisy = noisy.to(device) noisy = noisy.permute(0, 3, 1, 2) clean = clean.to(device) clean = clean.permute(0, 3, 1, 2)

时间: 2024-04-19 10:29:23 浏览: 66
这段代码展示了一个训练循环的示例。在这个循环中,使用了一个名为`train_loader`的数据加载器来加载训练数据。`train_loader`在这里被假设为一个可以迭代的对象,它可以按批次提供训练数据。 在每个批次中,`noisy`和`clean`是从`train_loader`中获取的输入数据和标签数据。这些数据会被送到设备上进行处理,通过`.to(device)`将它们放置在指定的设备上(例如GPU)。然后,使用`.permute(0, 3, 1, 2)`对数据维度进行重新排列,以适应模型的输入要求。 在这段代码中,通过`tqdm`库创建了一个进度条`loop`,用于显示训练循环的进度。`enumerate(train_loader)`用于迭代训练数据的批次,`total=len(train_loader)`用于指定进度条的总长度。 最后,`model.train()`用于将模型设置为训练模式,以便在训练循环中进行参数更新。
相关问题

for step, (images, labels) in tqdm(enumerate(train_loader), total=len(train_loader)):

这段代码使用了Python中的内置函数`enumerate`来遍历`train_loader`中的每个元素,同时使用了`tqdm`库来显示进度条。每次迭代,`enumerate`会返回一个元组`(step, (images, labels))`,其中`step`是一个整数表示当前迭代的步数,`(images, labels)`是一个元组,其中`images`表示当前迭代的图像数据,`labels`表示当前迭代的标签数据。这段代码的作用是遍历训练集中的所有图像数据和标签数据,并且在遍历过程中显示进度条。

for epoch in range(config.epochs): trainset = VideoDataset_images_with_motion_features(videos_dir, feature_dir, datainfo_train, transformations_train, 'test', config.crop_size, 'SlowFast') #testset = VideoDataset_images_with_motion_features(videos_dir, feature_dir, datainfo_test, transformations_test,'test', config.crop_size, 'SlowFast') #print((trainset.shape())) #trainsettemp=data_loader.VideoDataset_images_with_motion_features() #testsettemp=data_loader.VideoDataset_images_with_motion_features() kf = KFold(n_splits=10, shuffle=True) train_loader = torch.utils.data.DataLoader(trainset, batch_size=1, shuffle=False, num_workers=config.num_workers) for train_index, test_index in enumerate(kf.split(trainset)): print(train_index) #trainsettemp.append(trainset(train_index)) #testsettemp.append(trainset(test_index)) train_loader1 = torch.utils.data.Subset(train_loader,train_index) train_loader2=torch.utils.data.DataLoader(train_loader1,batch_size=1,shuffle=False,num_workers=config.num_workers)

这段代码是一个训练模型的循环。首先,它定义了一个数据集`trainset`,并使用`VideoDataset_images_with_motion_features`类从视频目录和特征目录中获取图像,然后将其转换为`SlowFast`格式。然后,它定义了一个`KFold`对象,将数据集分成10个折叠,并使用`torch.utils.data.DataLoader`类创建一个`train_loader`对象,用于加载训练数据。在每个循环中,使用`kf.split(trainset)`方法获取训练和测试数据的索引,并使用`torch.utils.data.Subset`类创建新的`train_loader1`对象,它仅包含训练数据的索引。最后,使用`torch.utils.data.DataLoader`类创建一个新的`train_loader2`对象,用于加载新的训练数据。
阅读全文

相关推荐

def train(model, train_loader, criterion, optimizer): model.train() train_loss = 0.0 train_acc = 0.0 for i, (inputs, labels) in enumerate(train_loader): optimizer.zero_grad() outputs = model(inputs.unsqueeze(1).float()) loss = criterion(outputs, labels.long()) loss.backward() optimizer.step() train_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) train_acc += torch.sum(preds == labels.data) train_loss = train_loss / len(train_loader.dataset) train_acc = train_acc.double() / len(train_loader.dataset) return train_loss, train_acc def test(model, verify_loader, criterion): model.eval() test_loss = 0.0 test_acc = 0.0 with torch.no_grad(): for i, (inputs, labels) in enumerate(test_loader): outputs = model(inputs.unsqueeze(1).float()) loss = criterion(outputs, labels.long()) test_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) test_acc += torch.sum(preds == labels.data) test_loss = test_loss / len(test_loader.dataset) test_acc = test_acc.double() / len(test_loader.dataset) return test_loss, test_acc # Instantiate the model model = CNN() # Define the loss function and optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # Instantiate the data loaders train_dataset = MyDataset1('1MATRICE') train_loader = DataLoader(train_dataset, batch_size=5, shuffle=True) test_dataset = MyDataset2('2MATRICE') test_loader = DataLoader(test_dataset, batch_size=5, shuffle=False) train_losses, train_accs, test_losses, test_accs = [], [], [], [] for epoch in range(500): train_loss, train_acc = train(model, train_loader, criterion, optimizer) test_loss, test_acc = test(model, test_loader, criterion) train_losses.append(train_loss) train_accs.append(train_acc) test_losses.append(test_loss) test_accs.append(test_acc) print('Epoch: {} Train Loss: {:.4f} Train Acc: {:.4f} Test Loss: {:.4f} Test Acc: {:.4f}'.format( epoch, train_loss, train_acc, test_loss, test_acc))

#LSTM #from tqdm import tqdm import os os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128" import time #GRUmodel=GRU(feature_size,hidden_size,num_layers,output_size) #GRUmodel=GRUAttention(7,5,1,2).to(device) model=lstm(7,20,2,1).to(device) model.load_state_dict(torch.load("LSTMmodel1.pth",map_location=device))#pytorch 导入模型lstm(7,20,4,1).to(device) loss_function=nn.MSELoss() lr=[] start=time.time() start0 = time.time() optimizer=torch.optim.Adam(model.parameters(),lr=0.5) scheduler = ReduceLROnPlateau(optimizer, mode='min',factor=0.5,patience=50,cooldown=60,min_lr=0,verbose=False) #模型训练 trainloss=[] epochs=2000 best_loss=1e10 for epoch in range(epochs): model.train() running_loss=0 lr.append(optimizer.param_groups[0]["lr"]) #train_bar=tqdm(train_loader)#形成进度条 for i,data in enumerate(train_loader): x,y=data optimizer.zero_grad() y_train_pred=model(x) loss=loss_function(y_train_pred,y.reshape(-1,1)) loss.backward() optimizer.step() running_loss+=loss.item() trainloss.append(running_loss/len(train_loader)) scheduler.step(trainloss[-1]) #模型验证 model.eval() validation_loss=0 validationloss=[] with torch.no_grad(): #validation_bar=tqdm(validation_loader) for j,data in enumerate(validation_loader): x_validation,y_validation=data y_validation_pred=model(x_validation) validationrunloss=loss_function(y_validation_pred,y_validation.reshape(-1,1)) validation_loss+=validationrunloss #validation_bar.desc="loss:{:.4f}".format(validation_loss/len(validation_loader)) validation_loss=validation_loss/len(validation_loader) validationloss.append(validation_loss) end=time.time() print("learningrate:%.5f,epoch:[%5d/%5d]time:%.2fs, train_loss:%.5f,validation_loss:%.6f" % (lr[-1],epoch, epochs, (end - start),trainloss[-1],validationloss[-1])) start = time.time() if validationloss[-1]<best_loss: best_loss=validationloss[-1] torch.save(model.state_dict,"LSTMmodel1.pth") #torch.save(model.state_dict,"LSTMmodel.pth") end0 = time.time() print("the total training time is :%.2fmin" % ((end0 - start0) / 60)) 报错:Expected state_dict to be dict-like, got <class 'method'>.

def the_loop(net, optimizer, train_loader, val_loader=None, epochs=None, swa_model=None, swa_start=5): if epochs is None: raise Exception("a training duration must be given: set epochs") log_iterval = 1 running_mean = 0. loss = torch.Tensor([0.]).cuda() losses = [] val_losses = [] states = [] i, j = 0, 0 pbar = tqdm(train_loader, desc=f"epoch {i}", postfix={"loss": loss.item(), "step": j}) for i in range(epochs): running_mean = 0. j = 0 pbar.set_description(f"epoch {i}") pbar.refresh() pbar.reset() for j, batch in enumerate(train_loader): # implement training step by # - appending the current states to states # - doing a training_step # - appending the current loss to the losses list # - update the running_mean for logging states.append(net.state_dict()) optimizer.zero_grad() output = net(batch) batch_loss = loss_function(output, batch.target) batch_loss.backward() optimizer.step() losses.append(batch_loss.item()) running_mean = (running_mean * j + batch_loss.item()) / (j + 1) if j % log_iterval == 0 and j != 0: pbar.set_postfix({"loss": running_mean, "step": j}) running_mean = 0. pbar.update() if i > swa_start and swa_model is not None: swa_model.update_parameters(net) if val_loader is not None: val_loss = 0. with torch.no_grad(): for val_batch in val_loader: val_output = net(val_batch) val_loss += loss_function(val_output, val_batch.target).item() val_loss /= len(val_loader) val_losses.append(val_loss) pbar.refresh() if val_loader is not None: return losses, states, val_losses return losses, states net = get_OneFCNet() epochs = 10 optimizer = GD(net.parameters(), 0.002) loss_fn = nn.CrossEntropyLoss() losses, states = the_loop(net, optimizer, gd_data_loader, epochs=epochs) fig = plot_losses(losses) iplot(fig)这是之前的代码怎么修改这段代码的错误?

最新推荐

recommend-type

Java源码ssm框架的房屋租赁系统-合同-毕业设计论文-期末大作业.rar

本项目是一个基于Java源码的SSM框架房屋租赁系统,旨在为房屋租赁市场提供一个便捷、高效、安全的管理平台。系统主要功能包括房屋信息管理、租赁合同管理、租金收取管理、租客信息管理等。通过该系统,房东可以轻松发布房屋信息,管理租赁合同和租金收取,而租客则可以方便地查找合适的房源,提交租赁申请,签订电子合同,并进行租金支付。系统采用SSM框架(Spring、Spring MVC、MyBatis)进行开发,确保了系统的稳定性和扩展性。Spring框架负责依赖注入和业务逻辑管理,Spring MVC处理前端请求和页面展示,MyBatis则用于数据库操作。项目还集成了权限管理、日志记录等模块,提升了系统的安全性和可维护性。项目为完整毕设源码,先看项目演示,希望对需要的同学有帮助。
recommend-type

MDM Bypasser Tool激活锁并保存数据工具

MDM Bypasser Tool激活锁并保存数据工具 绕过 iPhone 上的 iCloud 激活锁并保存您的数据。
recommend-type

OC-Dialect线上多语言(多列表) 3.SDK每个方法解析

OC-Dialect线上多语言(多列表) 3.SDK每个方法解析
recommend-type

数学实验中MATLAB的应用技巧与实例解析

内容概要:本文档围绕数学实验的MATLAB应用进行了详细介绍,涵盖了基本的四则运算、含有三角函数和指数函数的复杂运算、向量及其多种类型的运算方法(包括数乘、加减及点积计算)、不同方式实现的数的阶乘(普通脚本函数、递归函数以及直接利用MATLAB内置函数)和矩阵的基本及高级运算等多个方面的内容。每个部分都有25道练习题目帮助理解。 适合人群:面向对MATLAB感兴趣的学习者和有一定编程基础的研究者。 使用场景及目标:通过一系列具体的数学实验和编程训练,加深对于MATLAB这一强大科学计算工具的认识与掌握程度,能够灵活运用各种基本函数解决实际问题。 阅读建议:随着教程逐步深入,读者应在电脑上跟随指南亲自操作,以便更好地理解决定思路与具体步骤,将理论转化为实操能力。
recommend-type

易语言例程:用易核心支持库打造功能丰富的IE浏览框

资源摘要信息:"易语言-易核心支持库实现功能完善的IE浏览框" 易语言是一种简单易学的编程语言,主要面向中文用户。它提供了大量的库和组件,使得开发者能够快速开发各种应用程序。在易语言中,通过调用易核心支持库,可以实现功能完善的IE浏览框。IE浏览框,顾名思义,就是能够在一个应用程序窗口内嵌入一个Internet Explorer浏览器控件,从而实现网页浏览的功能。 易核心支持库是易语言中的一个重要组件,它提供了对IE浏览器核心的调用接口,使得开发者能够在易语言环境下使用IE浏览器的功能。通过这种方式,开发者可以创建一个具有完整功能的IE浏览器实例,它不仅能够显示网页,还能够支持各种浏览器操作,如前进、后退、刷新、停止等,并且还能够响应各种事件,如页面加载完成、链接点击等。 在易语言中实现IE浏览框,通常需要以下几个步骤: 1. 引入易核心支持库:首先需要在易语言的开发环境中引入易核心支持库,这样才能在程序中使用库提供的功能。 2. 创建浏览器控件:使用易核心支持库提供的API,创建一个浏览器控件实例。在这个过程中,可以设置控件的初始大小、位置等属性。 3. 加载网页:将浏览器控件与一个网页地址关联起来,即可在控件中加载显示网页内容。 4. 控制浏览器行为:通过易核心支持库提供的接口,可以控制浏览器的行为,如前进、后退、刷新页面等。同时,也可以响应浏览器事件,实现自定义的交互逻辑。 5. 调试和优化:在开发完成后,需要对IE浏览框进行调试,确保其在不同的操作和网页内容下均能够正常工作。对于性能和兼容性的问题需要进行相应的优化处理。 易语言的易核心支持库使得在易语言环境下实现IE浏览框变得非常方便,它极大地降低了开发难度,并且提高了开发效率。由于易语言的易用性,即使是初学者也能够在短时间内学会如何创建和操作IE浏览框,实现网页浏览的功能。 需要注意的是,由于IE浏览器已经逐渐被微软边缘浏览器(Microsoft Edge)所替代,使用IE核心的技术未来可能面临兼容性和安全性的挑战。因此,在实际开发中,开发者应考虑到这一点,并根据需求选择合适的浏览器控件实现技术。 此外,易语言虽然简化了编程过程,但其在功能上可能不如主流的编程语言(如C++, Java等)强大,且社区和技术支持相比其他语言可能较为有限,这些都是在选择易语言作为开发工具时需要考虑的因素。 文件名列表中的“IE类”可能是指包含实现IE浏览框功能的类库或者示例代码。在易语言中,类库是一组封装好的代码模块,其中包含了各种功能的实现。通过在易语言项目中引用这些类库,开发者可以简化开发过程,快速实现特定功能。而示例代码则为开发者提供了具体的实现参考,帮助理解和学习如何使用易核心支持库来创建IE浏览框。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)

![STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)](https://tapit.vn/wp-content/uploads/2019/01/cubemx-peripheral-1024x545.png) # 摘要 本文全面介绍了STM32F407ZG微控制器的引脚特性、功能、配置和应用。首先概述了该芯片的引脚布局,然后详细探讨了标准外设、高级控制以及特殊功能引脚的不同配置和使用方法。在此基础上,文章深入分析了引脚模式配置、高级配置技巧,并提供了实际应用案例,如LED控制和串口通信。在设计方面,阐述了引脚布局策略、多层板设计及高密度引脚应用的解决方案。最后,介绍
recommend-type

给出文档中问题的答案代码

您提到的是需要编写MATLAB代码来实现文档中的实验任务。以下是根据文档内容编写的MATLAB代码示例: ```matlab % 上机2 实验代码 % 读取输入图像 inputImage = imread('your_face_image.jpg'); % 替换为您的图像文件路径 if size(inputImage, 1) < 1024 || size(inputImage, 2) < 1024 error('图像尺寸必须大于1024x1024'); end % 将彩色图像转换为灰度图像 grayImage = rgb2gray(inputImage); % 调整图像大小为5
recommend-type

Docker构建与运行Next.js应用的指南

资源摘要信息:"rivoltafilippo-next-main" 在探讨“rivoltafilippo-next-main”这一资源时,首先要从标题“rivoltafilippo-next”入手。这个标题可能是某一项目、代码库或应用的命名,结合描述中提到的Docker构建和运行命令,我们可以推断这是一个基于Docker的Node.js应用,特别是使用了Next.js框架的项目。Next.js是一个流行的React框架,用于服务器端渲染和静态网站生成。 描述部分提供了构建和运行基于Docker的Next.js应用的具体命令: 1. `docker build`命令用于创建一个新的Docker镜像。在构建镜像的过程中,开发者可以定义Dockerfile文件,该文件是一个文本文件,包含了创建Docker镜像所需的指令集。通过使用`-t`参数,用户可以为生成的镜像指定一个标签,这里的标签是`my-next-js-app`,意味着构建的镜像将被标记为`my-next-js-app`,方便后续的识别和引用。 2. `docker run`命令则用于运行一个Docker容器,即基于镜像启动一个实例。在这个命令中,`-p 3000:3000`参数指示Docker将容器内的3000端口映射到宿主机的3000端口,这样做通常是为了让宿主机能够访问容器内运行的应用。`my-next-js-app`是容器运行时使用的镜像名称,这个名称应该与构建时指定的标签一致。 最后,我们注意到资源包含了“TypeScript”这一标签,这表明项目可能使用了TypeScript语言。TypeScript是JavaScript的一个超集,它添加了静态类型定义的特性,能够帮助开发者更容易地维护和扩展代码,尤其是在大型项目中。 结合资源名称“rivoltafilippo-next-main”,我们可以推测这是项目的主目录或主仓库。通常情况下,开发者会将项目的源代码、配置文件、构建脚本等放在一个主要的目录中,这个目录通常命名为“main”或“src”等,以便于管理和维护。 综上所述,我们可以总结出以下几个重要的知识点: - Docker容器和镜像的概念以及它们之间的关系:Docker镜像是静态的只读模板,而Docker容器是从镜像实例化的动态运行环境。 - `docker build`命令的使用方法和作用:这个命令用于创建新的Docker镜像,通常需要一个Dockerfile来指定构建的指令和环境。 - `docker run`命令的使用方法和作用:该命令用于根据镜像启动一个或多个容器实例,并可指定端口映射等运行参数。 - Next.js框架的特点:Next.js是一个支持服务器端渲染和静态网站生成的React框架,适合构建现代的Web应用。 - TypeScript的作用和优势:TypeScript是JavaScript的一个超集,它提供了静态类型检查等特性,有助于提高代码质量和可维护性。 - 项目资源命名习惯:通常项目会有一个主目录,用来存放项目的源代码和核心配置文件,以便于项目的版本控制和团队协作。 以上内容基于给定的信息进行了深入的分析,为理解该项目的构建、运行方式以及技术栈提供了基础。在实际开发中,开发者应当参考更详细的文档和指南,以更高效地管理和部署基于Docker和TypeScript的Next.js项目。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依