loop = tqdm(enumerate(train_loader), total=len(train_loader), leave=False) model.train() for i, (noisy, clean) in loop: noisy = noisy.to(device) noisy = noisy.permute(0, 3, 1, 2) clean = clean.to(device) clean = clean.permute(0, 3, 1, 2)
时间: 2024-04-19 10:29:23 浏览: 66
这段代码展示了一个训练循环的示例。在这个循环中,使用了一个名为`train_loader`的数据加载器来加载训练数据。`train_loader`在这里被假设为一个可以迭代的对象,它可以按批次提供训练数据。
在每个批次中,`noisy`和`clean`是从`train_loader`中获取的输入数据和标签数据。这些数据会被送到设备上进行处理,通过`.to(device)`将它们放置在指定的设备上(例如GPU)。然后,使用`.permute(0, 3, 1, 2)`对数据维度进行重新排列,以适应模型的输入要求。
在这段代码中,通过`tqdm`库创建了一个进度条`loop`,用于显示训练循环的进度。`enumerate(train_loader)`用于迭代训练数据的批次,`total=len(train_loader)`用于指定进度条的总长度。
最后,`model.train()`用于将模型设置为训练模式,以便在训练循环中进行参数更新。
相关问题
for step, (images, labels) in tqdm(enumerate(train_loader), total=len(train_loader)):
这段代码使用了Python中的内置函数`enumerate`来遍历`train_loader`中的每个元素,同时使用了`tqdm`库来显示进度条。每次迭代,`enumerate`会返回一个元组`(step, (images, labels))`,其中`step`是一个整数表示当前迭代的步数,`(images, labels)`是一个元组,其中`images`表示当前迭代的图像数据,`labels`表示当前迭代的标签数据。这段代码的作用是遍历训练集中的所有图像数据和标签数据,并且在遍历过程中显示进度条。
for epoch in range(config.epochs): trainset = VideoDataset_images_with_motion_features(videos_dir, feature_dir, datainfo_train, transformations_train, 'test', config.crop_size, 'SlowFast') #testset = VideoDataset_images_with_motion_features(videos_dir, feature_dir, datainfo_test, transformations_test,'test', config.crop_size, 'SlowFast') #print((trainset.shape())) #trainsettemp=data_loader.VideoDataset_images_with_motion_features() #testsettemp=data_loader.VideoDataset_images_with_motion_features() kf = KFold(n_splits=10, shuffle=True) train_loader = torch.utils.data.DataLoader(trainset, batch_size=1, shuffle=False, num_workers=config.num_workers) for train_index, test_index in enumerate(kf.split(trainset)): print(train_index) #trainsettemp.append(trainset(train_index)) #testsettemp.append(trainset(test_index)) train_loader1 = torch.utils.data.Subset(train_loader,train_index) train_loader2=torch.utils.data.DataLoader(train_loader1,batch_size=1,shuffle=False,num_workers=config.num_workers)
这段代码是一个训练模型的循环。首先,它定义了一个数据集`trainset`,并使用`VideoDataset_images_with_motion_features`类从视频目录和特征目录中获取图像,然后将其转换为`SlowFast`格式。然后,它定义了一个`KFold`对象,将数据集分成10个折叠,并使用`torch.utils.data.DataLoader`类创建一个`train_loader`对象,用于加载训练数据。在每个循环中,使用`kf.split(trainset)`方法获取训练和测试数据的索引,并使用`torch.utils.data.Subset`类创建新的`train_loader1`对象,它仅包含训练数据的索引。最后,使用`torch.utils.data.DataLoader`类创建一个新的`train_loader2`对象,用于加载新的训练数据。
阅读全文