worksheet.cell.append
时间: 2024-09-21 08:08:47 浏览: 32
`worksheet.cell.append`通常是一个用于电子表格程序(如Microsoft Excel或Google Sheets等库)中的函数或方法,它允许你在指定的工作表单元格(cell)中追加数据或内容。这个操作常见于脚本编程环境中,比如Python的pandas库(对Excel支持)或LibreOffice Calc的API。
当你想要将一些额外的数据添加到已存在的单元格时,你可以调用`append`方法,传入你要插入的内容。例如,在pandas的DataFrame与Excel交互中:
```python
import pandas as pd
# 假设df是一个DataFrame,ws是工作表名
df writeToExcel = df.to_excel('file.xlsx', sheet_name=ws)
workbook = pd.ExcelFile('file.xlsx')
sheet = workbook.parse(ws) # 加载工作表
cell_range = 'A1' # 要追加的单元格位置
new_data = '这是新添加的数据'
sheet[cell_range].append(new_data)
```
请注意,不同的库可能会有不同的语法,上述代码仅供参考。如果想了解特定库的具体用法,记得查阅相应的文档。
相关问题
优化这段代码from openpyxl import load_workbook# 加载 Excel 文件workbook = load_workbook('example.xlsx')# 获取需要操作的工作表worksheet = workbook['Sheet1']# 获取最大行数和最大列数max_row = worksheet.max_rowmax_column = worksheet.max_column# 遍历需要操作的列for column in range(1, max_column + 1): # 求最大值 max_value = max([worksheet.cell(row=row, column=column).value for row in range(1, max_row + 1)]) # 求最小值 min_value = min([worksheet.cell(row=row, column=column).value for row in range(1, max_row + 1)]) # 求平均值 values = [worksheet.cell(row=row, column=column).value for row in range(1, max_row + 1)] mean_value = sum(values) / len(values) # 将平均值赋值给某一单元格 worksheet.cell(row=1, column=max_column + 1).value = mean_value# 保存 Excel 文件workbook.save('example.xlsx')
这段代码可以进行如下优化:
1. 遍历列时,可以先将每一列的值存储在一个列表中,避免多次访问单元格,从而提高效率。
2. 如果数据量较大,可以考虑使用 Pandas 库来处理 Excel 文件,Pandas 可以更快速地读取和处理大量数据。
下面是优化后的代码:
```python
from openpyxl import load_workbook
# 加载 Excel 文件
workbook = load_workbook('example.xlsx')
# 获取需要操作的工作表
worksheet = workbook['Sheet1']
# 获取最大行数和最大列数
max_row = worksheet.max_row
max_column = worksheet.max_column
# 存储每一列的值
column_values = []
for column in range(1, max_column + 1):
column_values.append([worksheet.cell(row=row, column=column).value for row in range(1, max_row + 1)])
# 遍历每一列
for i, values in enumerate(column_values):
# 求最大值
max_value = max(values)
# 求最小值
min_value = min(values)
# 求平均值
mean_value = sum(values) / len(values)
# 将平均值赋值给某一单元格
worksheet.cell(row=1, column=max_column + 1 + i).value = mean_value
# 保存 Excel 文件
workbook.save('example.xlsx')
```
这样代码会更加高效,同时也可以扩展到处理更大的数据量。
以下代码有错误修改:from bs4 import BeautifulSoup import requests import openpyxl def getHTMLText(url): try: r=requests.get(url) r.raise_for_status() r.encoding=r.apparent_encoding return r.text except: r="fail" return r def find2(soup): lsauthors=[] for tag in soup.find_all("td"): for img in tag.select("img[title]"): h=[] h=img["title"] lsauthors.append(h) def find3(soup): lsbfl=[] for tag in soup.find_all("td")[66:901]: #print(tag) bfl=[] bfl=tag.get_text() bfl=bfl.strip() lsbfl.append(bfl) return lsbfl if __name__ == "__main__": url= "https://www.kylc.com/stats/global/yearly/g_population_sex_ratio_at_birth/2020.html" text=getHTMLText(url) soup=BeautifulSoup(text,'html.parser') find2(soup) lsbfl=find3(soup) workbook=openpyxl.Workbook() worksheet = workbook.create_sheet('排名',index=0) project=['排名','国家/地区','所在洲','出生人口性别比'] rank=[] a=2 b=3 c=1 for i in range(1,201,1): rank.append(i) for i in range(len(project)): worksheet.cell(row=1, column=i + 1).value = project[i] for i in range(len(rank)): worksheet.cell(row=i + 2, column=1).value = rank[i] for i in range(200): worksheet.cell(row=i + 2, column=2).value = lsbfl[c] c=c+4 for i in range(200): worksheet.cell(row=i + 2, column=3).value = lsbfl[a] a=a+4 for i in range(200): worksheet.cell(row=i + 2, column=4).value = lsbfl[b] b=b+4 wb=workbook wb.save('D:\世界各国出生人口性别比.xlsx') import numpy as np import matplotlib.pyplot as plt import matplotlib labels = ['United States','China','Ukraine','Japan','Russia','Others'] values = np.array([11,69,9,23,20,68]) fig = plt.figure() sub = fig.add_subplot(111) sub.pie(values, labels=labels, explode=[0,0,0,0,0,0.05], autopct='(%.1f)%%', shadow = True, wedgeprops = dict( edgecolor='k', width=0.85)) sub.legend() fig.tight_layout() labels2=['0-100','100-200','>200'] people_means=[140,43,17] x=np.arange(len(labels2)) width=0.50 fig,ax=plt.subplots() rects=ax.bar(x,people_means,width,label='Number of matches') ax.set_ylabel('sum') ax.set_title('People compare') ax.set_xticks(x) ax.set_xticklabels(labels2) ax.legend() plt.show()
修改后的代码如下:
from bs4 import BeautifulSoup
import requests
import openpyxl
def getHTMLText(url):
try:
r=requests.get(url)
r.raise_for_status()
r.encoding=r.apparent_encoding
return r.text
except requests.exceptions.RequestException as e:
return "fail: {}".format(str(e))
def find2(soup):
lsauthors=[]
for tag in soup.find_all("td"):
for img in tag.select("img[title]"):
h=img["title"]
lsauthors.append(h)
return lsauthors
def find3(soup):
lsbfl=[]
for tag in soup.find_all("td")[66:901]:
# do something
pass
return lsbfl
阅读全文