train_data = pd.get_dummies(train_data)

时间: 2024-04-18 19:34:10 浏览: 20
这段代码使用了pandas库中的get_dummies函数,用于对train_data进行独热编码(One-Hot Encoding)。通过这个函数,将train_data中的分类变量转换为二进制的特征向量,并创建新的虚拟变量列来表示原始数据中的每个分类值。这有助于在机器学习模型中更好地处理分类数据。
相关问题

import pandas as pd from keras.models import Sequential from keras.layers import Dense import warnings warnings.filterwarnings("ignore") file = pd.read_excel('/Users/zxh-mac/desktop/Edu-Data(A题数据).xlsx')x = pd.get_dummies(file, dtype=int) x.to_excel('/Users/zxh-mac/desktop/Edu-Data(onehot_version).xlsx') data = pd.read_excel('/Users/zxh-mac/desktop/Edu-Data(onehot_version).xlsx') # 第三阶段:实现bp神经网络 train_data = data[:320] test_data = data[320:] train_features = train_data.drop('Class', axis=1) train_labels = train_data['Class'] test_features = test_data.drop('Class', axis=1) test_labels = test_data['Class'] model = Sequential() model.add(Dense(units=72, activation='relu', input_dim=train_features.shape[1])) model.add(Dense(units=72, activation='relu')) model.add(Dense(units=3, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(train_features, train_labels, epochs=10, batch_size=32, validation_data=(test_features, test_labels)) predictions = model.predict(test_features)

这段代码使用了Python中的pandas、keras等库,实现了一个简单的bp神经网络模型进行分类任务。 首先,代码从一个Excel文件中读取数据: ```python file = pd.read_excel('/Users/zxh-mac/desktop/Edu-Data(A题数据).xlsx') ``` 然后,使用`pd.get_dummies()`方法将数据进行one-hot编码: ```python x = pd.get_dummies(file, dtype=int) x.to_excel('/Users/zxh-mac/desktop/Edu-Data(onehot_version).xlsx') ``` 接下来,读取one-hot编码后的数据: ```python data = pd.read_excel('/Users/zxh-mac/desktop/Edu-Data(onehot_version).xlsx') ``` 然后将数据集划分为训练集和测试集: ```python train_data = data[:320] test_data = data[320:] ``` 从训练集和测试集中分离出特征和标签: ```python train_features = train_data.drop('Class', axis=1) train_labels = train_data['Class'] test_features = test_data.drop('Class', axis=1) test_labels = test_data['Class'] ``` 然后,使用Keras库中的Sequential模型创建bp神经网络,添加三层全连接层,并使用sigmoid函数作为激活函数: ```python model = Sequential() model.add(Dense(units=72, activation='relu', input_dim=train_features.shape[1])) model.add(Dense(units=72, activation='relu')) model.add(Dense(units=3, activation='sigmoid')) ``` 接下来,编译模型,使用二元交叉熵作为损失函数,adam作为优化器,并使用准确率作为评估指标: ```python model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) ``` 使用训练集对模型进行训练: ```python model.fit(train_features, train_labels, epochs=10, batch_size=32, validation_data=(test_features, test_labels)) ``` 最后,使用测试集对模型进行预测: ```python predictions = model.predict(test_features) ``` 这段代码实现了一个简单的bp神经网络模型,用于进行分类任务。

import pandas as pd from keras.models import Sequential from keras.layers import Dense import numpy as np from sklearn.metrics import accuracy_score file = pd.read_excel('/Users/zxh-mac/desktop/Edu-Data(A题数据).xlsx') # 第二阶段:转化定性变量为定量变量 使用onehot函数 同时读取新的excel x = pd.get_dummies(file, dtype=int) x.to_excel('/Users/zxh-mac/desktop/Edu-Data(onehot_version).xlsx') data = pd.read_excel('/Users/zxh-mac/desktop/Edu-Data(onehot_version).xlsx') # 第三阶段:实现bp神经网络 train_data = data[:320] test_data = data[320:] train_features = train_data.drop('Class', axis=1).values train_labels = train_data['Class'].values test_features = test_data.drop('Class', axis=1).values test_labels = test_data['Class'].values model = Sequential() model.add(Dense(units=72, activation='relu', input_dim=train_features.shape[1])) model.add(Dense(units=72, activation='relu')) model.add(Dense(units=3, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(train_features, train_labels, epochs=10, batch_size=32, validation_data=(test_features, test_labels), verbose=1) predictions = model.predict(test_features) print(predictions)就是这段 无法确定问题是什么

这段代码的格式有些混乱,建议您按照以下方式进行修改: 1. 将 "import" 语句放在文件开头,便于管理和查看。 2. 在 "import" 语句后加上空行,使代码更易读。 3. 将代码分成多行,以提高可读性。 4. 确认文件路径是否正确,可以使用绝对路径来避免路径错误的问题。 5. 确认您是否安装了 keras 和 sklearn 库。 修改后的代码如下: ``` import pandas as pd import numpy as np from keras.models import Sequential from keras.layers import Dense from sklearn.metrics import accuracy_score # 读取文件 file = pd.read_excel('/Users/zxh-mac/desktop/Edu-Data(A题数据).xlsx') # 使用onehot函数转换定性变量为定量变量 x = pd.get_dummies(file, dtype=int) x.to_excel('/Users/zxh-mac/desktop/Edu-Data(onehot_version).xlsx') # 读取新的excel data = pd.read_excel('/Users/zxh-mac/desktop/Edu-Data(onehot_version).xlsx') # 划分训练集和测试集 train_data = data[:320] test_data = data[320:] # 提取特征和标签 train_features = train_data.drop('Class', axis=1).values train_labels = train_data['Class'].values test_features = test_data.drop('Class', axis=1).values test_labels = test_data['Class'].values # 建立模型 model = Sequential() model.add(Dense(units=72, activation='relu', input_dim=train_features.shape[1])) model.add(Dense(units=72, activation='relu')) model.add(Dense(units=3, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # 训练模型 model.fit(train_features, train_labels, epochs=10, batch_size=32, validation_data=(test_features, test_labels), verbose=1) # 预测测试集 predictions = model.predict(test_features) print(predictions) ``` 如果问题还存在,建议您给出具体的错误信息或者提示,以便我们更好地帮助您解决问题。

相关推荐

import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split # 读取训练集和测试集数据 train_data = pd.read_csv(r'C:\ADULT\Titanic\train.csv') test_data = pd.read_csv(r'C:\ADULT\Titanic\test.csv') # 统计训练集和测试集缺失值数目 print(train_data.isnull().sum()) print(test_data.isnull().sum()) # 处理 Age, Fare 和 Embarked 缺失值 most_lists = ['Age', 'Fare', 'Embarked'] for col in most_lists: train_data[col] = train_data[col].fillna(train_data[col].mode()[0]) test_data[col] = test_data[col].fillna(test_data[col].mode()[0]) # 拆分 X, Y 数据并将分类变量 one-hot 编码 y_train_data = train_data['Survived'] features = ['Pclass', 'Age', 'SibSp', 'Parch', 'Fare', 'Sex', 'Embarked'] X_train_data = pd.get_dummies(train_data[features]) X_test_data = pd.get_dummies(test_data[features]) # 合并训练集 Y 和 X 数据,并创建乘客信息分类变量 train_data_selected = pd.concat([y_train_data, X_train_data], axis=1) print(train_data_selected) cate_features = ['Pclass', 'SibSp', 'Parch', 'Sex', 'Embarked', 'Age_category', 'Fare_category'] train_data['Age_category'] = pd.cut(train_data.Fare, bins=range(0, 100, 10)).astype(str) train_data['Fare_category'] = pd.cut(train_data.Fare, bins=list(range(-20, 110, 20)) + [800]).astype(str) print(train_data) # 统计各分类变量的分布并作出可视化呈现 plt.figure(figsize=(18, 16)) plt.subplots_adjust(hspace=0.3, wspace=0.3) for i, cate_feature in enumerate(cate_features): plt.subplot(7, 2, 2 * i + 1) sns.histplot(x=cate_feature, data=train_data, stat="density") plt.xlabel(cate_feature) plt.ylabel('Density') plt.subplot(7, 2, 2 * i + 2) sns.lineplot(x=cate_feature, y='Survived', data=train_data) plt.xlabel(cate_feature) plt.ylabel('Survived') plt.show() # 绘制点状的相关系数热图 plt.figure(figsize=(12, 8)) sns.heatmap(train_data_selected.corr(), vmin=-1, vmax=1, annot=True) plt.show() sourceRow = 891 output = pd.DataFrame({'PassengerId': test_data.PassengerId, 'Survived': predictions}) output.head() # 保存结果 output.to_csv('gender_submission.csv', index=False) print(output) train_X, test_X, train_y, test_y = train_test_split(X_train_data, y_train_data, train_size=0.8, random_state=42) print("随机森林分类结果") y_pred_train1 = train_data.predict(train_X) y_pred_test1 = train_data.predict(test_X) accuracy_train1 = accuracy_score(train_y, y_pred_train1) accuracy_test1 = accuracy_score(test_y, y_pred_test1) print("训练集——随机森林分类器准确率为:", accuracy_train1) print("测试集——随机森林分类器准确率为:", accuracy_train1)

function median_target(var) { temp = data[data[var].notnull()]; temp = temp[[var, 'Outcome']].groupby(['Outcome'])[[var]].median().reset_index(); return temp; } data.loc[(data['Outcome'] == 0) & (data['Insulin'].isnull()), 'Insulin'] = 102.5; data.loc[(data['Outcome'] == 1) & (data['Insulin'].isnull()), 'Insulin'] = 169.5; data.loc[(data['Outcome'] == 0) & (data['Glucose'].isnull()), 'Glucose'] = 107; data.loc[(data['Outcome'] == 1) & (data['Glucose'].isnull()), 'Glucose'] = 1; data.loc[(data['Outcome'] == 0) & (data['SkinThickness'].isnull()), 'SkinThickness'] = 27; data.loc[(data['Outcome'] == 1) & (data['SkinThickness'].isnull()), 'SkinThickness'] = 32; data.loc[(data['Outcome'] == 0) & (data['BloodPressure'].isnull()), 'BloodPressure'] = 70; data.loc[(data['Outcome'] == 1) & (data['BloodPressure'].isnull()), 'BloodPressure'] = 74.5; data.loc[(data['Outcome'] == 0) & (data['BMI'].isnull()), 'BMI'] = 30.1; data.loc[(data['Outcome'] == 1) & (data['BMI'].isnull()), 'BMI'] = 34.3; target_col = ["Outcome"]; cat_cols = data.nunique()[data.nunique() < 12].keys().tolist(); cat_cols = [x for x in cat_cols]; num_cols = [x for x in data.columns if x not in cat_cols + target_col]; bin_cols = data.nunique()[data.nunique() == 2].keys().tolist(); multi_cols = [i for i in cat_cols if i in bin_cols]; le = LabelEncoder(); for i in bin_cols: data[i] = le.fit_transform(data[i]); data = pd.get_dummies(data=data, columns=multi_cols); std = StandardScaler(); scaled = std.fit_transform(data[num_cols]); scaled = pd.DataFrame(scaled, columns=num_cols); df_data_og = data.copy(); data = data.drop(columns=num_cols, axis=1); data = data.merge(scaled, left_index=True, right_index=True, how='left'); X = data.drop('Outcome', axis=1); y = data['Outcome']; X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, shuffle=True, random_state=1); y_train = to_categorical(y_train); y_test = to_categorical(y_test);将这段代码添加注释

将下列代码变为伪代码def median_target(var): temp = data[data[var].notnull()] temp = temp[[var, 'Outcome']].groupby(['Outcome'])[[var]].median().reset_index() return temp data.loc[(data['Outcome'] == 0 ) & (data['Insulin'].isnull()), 'Insulin'] = 102.5 data.loc[(data['Result'] == 1 ) & (data['Insulin'].isnull()), 'Insulin'] = 169.5 data.loc[(data['Result'] == 0 ) & (data['Glucose'].isnull()), 'Glucose'] = 107 data.loc[(data['Result'] == 1 ) & (data['Glucose'].isnull()), 'Glucose'] = 1 data.loc[(data['Result'] == 0 ) & (data['SkinThickness'].isnull()), 'SkinThickness'] = 27 data.loc[(data['Result'] == 1 ) & (data['SkinThickness'].isnull()), 'SkinThickness'] = 32 data.loc[(data['Result'] == 0 ) & (data['BloodPressure'].isnull()), 'BloodPressure'] = 70 data.loc[(data['Result'] == 1 ) & (data['BloodPressure'].isnull()), 'BloodPressure'] = 74.5 data.loc[(data['Result'] == 0 ) & (data['BMI'].isnull()), 'BMI'] = 30.1 data.loc[(data['Result'] == 1 ) & (data['BMI'].isnull()), 'BMI'] = 34.3 target_col = [“Outcome”] cat_cols = data.nunique()[data.nunique() < 12].keys().tolist() cat_cols = [x for x in cat_cols ] #numerical列 num_cols = [x for x in data.columns if x 不在 cat_cols + target_col] #Binary列有 2 个值 bin_cols = data.nunique()[data.nunique() == 2].keys().tolist() #Columns 2 个以上的值 multi_cols = [i 表示 i in cat_cols if i in bin_cols] #Label编码二进制列 le = LabelEncoder() for i in bin_cols : data[i] = le.fit_transform(data[i]) #Duplicating列用于多值列 data = pd.get_dummies(data = data,columns = multi_cols ) #Scaling 数字列 std = StandardScaler() 缩放 = std.fit_transform(数据[num_cols]) 缩放 = pd。数据帧(缩放,列=num_cols) #dropping原始值合并数字列的缩放值 df_data_og = 数据.copy() 数据 = 数据.drop(列 = num_cols,轴 = 1) 数据 = 数据.合并(缩放,left_index=真,right_index=真,如何 = “左”) # 定义 X 和 Y X = 数据.drop('结果', 轴=1) y = 数据['结果'] X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, shuffle=True, random_state=1) y_train = to_categorical(y_train) y_test = to_categorical(y_test)

import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, confusion_matrix,classification_report import seaborn as sns import matplotlib.pyplot as plt # 读取数据 data = pd.read_excel('E:/桌面/预测脆弱性/20230523/预测样本/预测样本.xlsx') # 分割训练集和验证集 train_data = data.sample(frac=0.8, random_state=1) test_data = data.drop(train_data.index) # 定义特征变量和目标变量 features = ['高程', '起伏度', '桥梁长', '道路长', '平均坡度', '平均地温', 'T小于0', '相态'] target = '交通风险' # 训练随机森林模型 rf = RandomForestClassifier(n_estimators=100, random_state=1) rf.fit(train_data[features], train_data[target]) # 在验证集上进行预测并计算精度、召回率和F1值等指标 pred = rf.predict(test_data[features]) accuracy = accuracy_score(test_data[target], pred) confusion_mat = confusion_matrix(test_data[target], pred) classification_rep = classification_report(test_data[target], pred) print('Accuracy:', accuracy) print('Confusion matrix:') print(confusion_mat) print('Classification report:') print(classification_rep) # 输出混淆矩阵图片 sns.heatmap(confusion_mat, annot=True, cmap="Blues") plt.show() # 读取新数据文件并预测结果 new_data = pd.read_excel('E:/桌面/预测脆弱性/20230523/预测样本/预测结果/交通风险预测096.xlsx') new_pred = rf.predict(new_data[features]) new_data['交通风险预测结果'] = new_pred new_data.to_excel('E:/桌面/预测脆弱性/20230523/预测样本/预测结果/交通风险预测096结果.xlsx', index=False)修改代码使得显示决策树模型以及多分类的roc曲线和auc值

import seaborn as sns corrmat = df.corr() top_corr_features = corrmat.index plt.figure(figsize=(16,16)) #plot heat map g=sns.heatmap(df[top_corr_features].corr(),annot=True,cmap="RdYlGn") plt.show() sns.set_style('whitegrid') sns.countplot(x='target',data=df,palette='RdBu_r') plt.show() dataset = pd.get_dummies(df, columns = ['sex', 'cp', 'fbs','restecg', 'exang', 'slope', 'ca', 'thal']) from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler standardScaler = StandardScaler() columns_to_scale = ['age', 'trestbps', 'chol', 'thalach', 'oldpeak'] dataset[columns_to_scale] = standardScaler.fit_transform(dataset[columns_to_scale]) dataset.head() y = dataset['target'] X = dataset.drop(['target'], axis=1) from sklearn.model_selection import cross_val_score knn_scores = [] for k in range(1, 21): knn_classifier = KNeighborsClassifier(n_neighbors=k) score = cross_val_score(knn_classifier, X, y, cv=10) knn_scores.append(score.mean()) plt.plot([k for k in range(1, 21)], knn_scores, color='red') for i in range(1, 21): plt.text(i, knn_scores[i - 1], (i, knn_scores[i - 1])) plt.xticks([i for i in range(1, 21)]) plt.xlabel('Number of Neighbors (K)') plt.ylabel('Scores') plt.title('K Neighbors Classifier scores for different K values') plt.show() knn_classifier = KNeighborsClassifier(n_neighbors = 12) score=cross_val_score(knn_classifier,X,y,cv=10) score.mean() from sklearn.ensemble import RandomForestClassifier randomforest_classifier= RandomForestClassifier(n_estimators=10) score=cross_val_score(randomforest_classifier,X,y,cv=10) score.mean()的roc曲线的代码

import pandas as pd data=pd.read_csv('housing.csv') total_bedrooms_mean=data['total_bedrooms'].mean() data['total_bedrooms'].fillna(total_bedrooms_mean,inplace=True) onehot=pd.get_dummies((data[['ocean_proximity']]),prefix='ocean_proximity') data.drop(columns = ['ocean_proximity'],inplace=True) X=pd.concat([data['housing_median_age'],data['total_rooms'],data['total_bedrooms'],data['population'],data['households'],data['median_income'],onehot],axis=1) y=data[["median_house_value"]] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,random_state=42) from sklearn.linear_model import LinearRegression lin_reg=LinearRegression() lin_reg.fit(X_train,y_train) y_pre=lin_reg.predict(X_test) from sklearn import metrics metrics.accuracy_score(y_test,y_pre)报错import pandas as pd data=pd.read_csv('housing.csv') total_bedrooms_mean=data['total_bedrooms'].mean() data['total_bedrooms'].fillna(total_bedrooms_mean,inplace=True) onehot=pd.get_dummies((data[['ocean_proximity']]),prefix='ocean_proximity') data.drop(columns = ['ocean_proximity'],inplace=True) X=pd.concat([data['housing_median_age'],data['total_rooms'],data['total_bedrooms'],data['population'],data['households'],data['median_income'],onehot],axis=1) y=data[["median_house_value"]] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,random_state=42) from sklearn.linear_model import LinearRegression lin_reg=LinearRegression() lin_reg.fit(X_train,y_train) y_pre=lin_reg.predict(X_test) from sklearn import metrics metrics.accuracy_score(y_test,y_pre)

这个代码为什么输出有问题import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score # 读取数据集 data = pd.read_csv('adult.csv') # 将数据集中的缺失值用平均值进行填充 data = data.fillna(data.mean()) # 将分类变量进行独热编码 data = pd.get_dummies(data) # 将目标变量进行二元编码 data['income'] = data['income'].apply(lambda x: 1 if x == '>50K' else 0) # 将数据集划分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(data.drop('income', axis=1), data['income'], test_size=0.2, random_state=42) # 对数据集进行标准化处理 scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) # 使用决策树算法建立分类模型 clf = DecisionTreeClassifier() clf.fit(X_train, y_train) # 对测试集进行预测 y_pred = clf.predict(X_test) # 计算模型的准确率、精确率、召回率和F1值 accuracy = accuracy_score(y_test, y_pred) precision = precision_score(y_test, y_pred) recall = recall_score(y_test, y_pred) f1 = f1_score(y_test, y_pred) # 输出模型的评估结果 print('Accuracy:', accuracy) print('Precision:', precision) print('Recall:', recall) print('F1 Score:', f1) # 将数据集保存为csv文件 data.to_csv('adult_processed.csv', index=False)

最新推荐

recommend-type

组成原理课程实验:MIPS 流水线CPU、实现36条指令、转发、冒险检测-内含源码和说明书.zip

组成原理课程实验:MIPS 流水线CPU、实现36条指令、转发、冒险检测-内含源码和说明书.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用 Python 画一个可以动的爱心

好的,我可以帮助您使用Python来绘制一个动态的爱心。您可以使用turtle库来实现。以下是实现代码: ```python import turtle import math # 设置画布和画笔 canvas = turtle.Screen() canvas.bgcolor("black") pencil = turtle.Turtle() pencil.speed(0) pencil.color("red", "pink") pencil.pensize(3) # 定义爱心函数 def draw_love(heart_size, x_offset=0, y_offset=0):
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

已知n个人(以编号0,1,2,3...n-1分别表示)围坐在一张圆桌周围。从编号为0的人开始报数1,数到m的那个人出列;他的下一个人又从1开始报数,数到m+1的那个人又出列(每次报数值加1);依此规律重复下去,直到圆桌周围的人全部出列。用递归方法解决

这个问题可以使用递归方法解决。下面是一个思路: 1. 定义一个函数,接收三个参数:n、m、i,表示还剩下n个人,每次数到m时出列,当前报数的人是i; 2. 如果n=1,返回i,即最后留下的那个人的编号; 3. 否则,计算出下一个出列的人的编号j,通过递归调用函数解决n-1个人的问题,其结果为k; 4. 如果k < j,即当前i之后出列的人的编号为k,需要将k转换为在i之前出列的编号,返回值为 k+(n-1); 5. 如果k>=j,即当前i之后出列的人的编号为k,返回值为 k-(j-1); 下面是对应的Python代码: ```python def josephus(n, m, i):
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。