optics聚类算法matlab代码
时间: 2023-11-25 19:40:38 浏览: 254
OPTICS(Ordering Points To Identify the Clustering Structure)是一种基于密度的聚类算法,它可以在不指定聚类数的情况下发现数据集中的聚类结构。关于OPTICS聚类算法的Matlab代码如下所示:
```matlab
function [reachability, order] = optics(X, minPts, epsilon)
% X: n-by-p data matrix
% minPts: minimum number of points required to form a cluster
% epsilon: maximum radius of the neighborhood
n = size(X, 1);
D = pdist2(X, X);
reachability = inf(1, n);
order = zeros(1, n);
processed = false(1, n);
coreDistances = zeros(1, n);
[sortedDistances, ~] = sort(D, 2);
coreDistances = sortedDistances(:, minPts);
coreDistances(coreDistances == 0) = eps; % Avoid dividing by zero
for i = 1:n
if ~processed(i)
processed(i) = true;
seeds = regionQuery(i, epsilon);
[seeds, reachability] = update(seeds, i, coreDistances, reachability);
while ~isempty(seeds)
current = seeds(1);
seeds = seeds(2:end);
processed(current) = true;
seeds = regionQuery(current, epsilon);
[seeds, reachability] = update(seeds, current, coreDistances, reachability);
end
end
end
[~, order] = sort(reachability, 'descend');
end
function seeds = regionQuery(p, epsilon)
% Find all points within distance epsilon from point p
global D;
seeds = find(D(p, :) <= epsilon);
end
function [seeds, reachability] = update(seeds, p, coreDistances, reachability)
% Update the reachability distance of the points in seeds
global D;
n = length(seeds);
for i = 1:n
q = seeds(i);
dist = max(coreDistances(p), D(p, q));
if dist < reachability(q)
reachability(q) = dist;
seeds(end+1) = q;
end
end
end
```
这段代码实现了OPTICS聚类算法的核心逻辑,并返回每个数据点的可达距离(reachability)和排序结果(order)。要注意的是,这里的代码仅供参考,可能需要根据具体的数据集和问题进行适当的修改和调整。
阅读全文