dbscan聚类算法matlab代码
时间: 2023-06-12 14:03:57 浏览: 100
DBSCAN聚类算法matlab代码
4星 · 用户满意度95%
以下是DBSCAN聚类算法的MATLAB代码示例:
```matlab
function [IDX, isnoise]=DBSCAN(X,epsilon,MinPts)
%Cite: www.cs.uic.edu/~db/dbSCAN/DBSCAN_optics.m
%Cite: www.mathworks.com/matlabcentral/fileexchange/52905-dbscan-clustering-algorithm
%Inputs:
% X - a matrix of data points (one per row)
% eps - neighborhood radius
% MinPts - minimum number of points required to form a cluster
%Outputs:
% IDX - cluster membership (0 indicates noise)
% isnoise - logical vector indicating noise points
C=0;
n=size(X,1);
D=pdist2(X,X); % pairwise distance matrix
visited=false(n,1);
IDX=zeros(n,1);
isnoise=false(n,1);
for i=1:n
if ~visited(i)
visited(i)=true;
Neighbors=RegionQuery(i);
if numel(Neighbors)<MinPts
% X(i,:) is NOISE
isnoise(i)=true;
else
C=C+1;
ExpandCluster(i,Neighbors,C);
end
end
end
function ExpandCluster(i,Neighbors,C)
IDX(i)=C;
k = 1;
while true
j = Neighbors(k);
if ~visited(j)
visited(j)=true;
Neighbors2=RegionQuery(j);
if numel(Neighbors2)>=MinPts
Neighbors=[Neighbors Neighbors2]; %#ok
end
end
if IDX(j)==0
IDX(j)=C;
end
k = k + 1;
if k > numel(Neighbors)
break;
end
end
end
function Neighbors=RegionQuery(i)
Neighbors=find(D(i,:)<=epsilon);
end
end
```
使用方法:
给定一个n×d的数据矩阵X,其中n是数据点的数量,d是每个数据点的维数,epsilon和MinPts是DBSCAN算法的参数。
```
IDX = DBSCAN(X,epsilon,MinPts);
```
返回结果IDX是每个数据点的簇分配,0表示噪声点,isnoise是一个逻辑向量,表示哪些点是噪声点。
阅读全文