optics算法matlab实现,OPTICS聚类算法的matlab实现
时间: 2023-07-07 18:35:15 浏览: 266
OPTICS_Clustering:OPTICS 无监督聚类算法的 MATLAB 实现
下面是一个简单的 OPTICS 聚类算法的 Matlab 实现:
```matlab
function [RD,CD,order]=optics(X,MinPts)
% Implementation of the OPTICS clustering algorithm
% INPUTS:
% X: data set (n x p matrix)
% MinPts: minimum number of points to form a cluster
% OUTPUTS:
% RD: vector of reachability distances
% CD: vector of core distances
% order: vector specifying the order in which points were processed
[n,p]=size(X);
% Calculate distance matrix
D=pdist2(X,X);
% Initialize reachability and core distance vectors
RD=Inf*ones(n,1);
CD=Inf*ones(n,1);
% Initialize order vector
order=zeros(n,1);
% Initialize processed flag
processed=false(n,1);
% Initialize index variable
ind=0;
% Loop through all points
for i=1:n
% If point has not been processed yet, expand cluster order
if ~processed(i)
ind=ind+1;
order(ind)=i;
processed(i)=true;
% Find neighbors of point
neighbors=find(D(i,:)<=eps);
nneighbors=length(neighbors);
% If point is a core point, update reachability and core distance of neighbors
if nneighbors>=MinPts
CD(i)=max(D(i,neighbors));
for j=1:nneighbors
if ~processed(neighbors(j))
newRD=max(CD(i),D(i,neighbors(j)));
if newRD<RD(neighbors(j))
RD(neighbors(j))=newRD;
end
end
end
% Process neighbors
while ~isempty(neighbors)
% Get next unprocessed neighbor
k=neighbors(1);
neighbors=neighbors(2:end);
if ~processed(k)
ind=ind+1;
order(ind)=k;
processed(k)=true;
% Find neighbors of neighbor
kn=find(D(k,:)<=eps);
knneighbors=length(kn);
% If neighbor is a core point, update reachability and core distance of its neighbors
if knneighbors>=MinPts
newCD=max(D(k,kn));
CD(k)=newCD;
for j=1:knneighbors
if ~processed(kn(j))
newRD=max(newCD,D(k,kn(j)));
if newRD<RD(kn(j))
RD(kn(j))=newRD;
end
neighbors=[neighbors,kn(j)];
end
end
end
end
end
end
end
end
% Remove extra zeros from order vector
order=order(1:ind);
end
```
这个函数的输入参数是数据集 X 和最小点数 MinPts,输出是 reachability distances、core distances 和 order。下面是一个简单的例子:
```matlab
% Generate sample data
X=[randn(100,2);2+randn(100,2)];
% Perform OPTICS clustering
[RD,CD,order]=optics(X,5);
% Plot reachability distances
figure;
plot(order,RD(order),'LineWidth',2);
xlabel('Point Index');
ylabel('Reachability Distance');
ylim([0,max(RD)]);
```
这个代码将生成一个包含两个高斯分布的二维数据集,并使用 OPTICS 算法将其聚类。最终,它会绘制出 reachability distances。
阅读全文