dsp pwm实现流水灯,只要.c文件,不需要.h文件

时间: 2023-12-06 19:02:44 浏览: 55
以下是一个简单的DSP PWM实现流水灯的.c文件示例: ```c #include "F28x_Project.h" #define LED1_GPIO 31 // LED1控制IO口 #define LED2_GPIO 34 // LED2控制IO口 #define LED3_GPIO 38 // LED3控制IO口 #define PWM_FREQ 5000 // PWM频率 #define PWM_PERIOD (200000000/PWM_FREQ) // PWM周期 #define DUTY_CYCLE_1 (PWM_PERIOD/3) // LED1占空比 #define DUTY_CYCLE_2 (2*PWM_PERIOD/3) // LED2占空比 #define DUTY_CYCLE_3 (PWM_PERIOD) // LED3占空比 Uint16 led1_state = 0; Uint16 led2_state = 0; Uint16 led3_state = 0; void Init_GPIO(void); void Init_PWM(void); void main(void) { InitSysCtrl(); Init_GPIO(); Init_PWM(); while (1) { if (led1_state == 1) { EPwm1Regs.CMPA.bit.CMPA = DUTY_CYCLE_1; EPwm2Regs.CMPA.bit.CMPA = 0; EPwm3Regs.CMPA.bit.CMPA = 0; led1_state = 0; led2_state = 1; } else if (led2_state == 1) { EPwm1Regs.CMPA.bit.CMPA = 0; EPwm2Regs.CMPA.bit.CMPA = DUTY_CYCLE_2; EPwm3Regs.CMPA.bit.CMPA = 0; led2_state = 0; led3_state = 1; } else if (led3_state == 1) { EPwm1Regs.CMPA.bit.CMPA = 0; EPwm2Regs.CMPA.bit.CMPA = 0; EPwm3Regs.CMPA.bit.CMPA = DUTY_CYCLE_3; led3_state = 0; led1_state = 1; } DELAY_US(100000); // 100ms延时 } } void Init_GPIO(void) { EALLOW; // 配置LED控制IO口为GPIO输出模式 GpioCtrlRegs.GPAMUX2.bit.GPIO31 = 0; // GPIO31 - LED1 GpioCtrlRegs.GPAMUX1.bit.GPIO34 = 0; // GPIO34 - LED2 GpioCtrlRegs.GPBMUX1.bit.GPIO38 = 0; // GPIO38 - LED3 GpioCtrlRegs.GPADIR.bit.GPIO31 = 1; // GPIO31 - LED1 GpioCtrlRegs.GPADIR.bit.GPIO34 = 1; // GPIO34 - LED2 GpioCtrlRegs.GPBDIR.bit.GPIO38 = 1; // GPIO38 - LED3 EDIS; } void Init_PWM(void) { EALLOW; // 配置PWM引脚和时钟 GpioCtrlRegs.GPAMUX1.bit.GPIO0 = 1; // EPWM1A GpioCtrlRegs.GPAMUX1.bit.GPIO2 = 1; // EPWM2A GpioCtrlRegs.GPAMUX1.bit.GPIO4 = 1; // EPWM3A CpuSysRegs.PCLKCR2.bit.EPWM1ENCLK = 1; // EPWM1时钟使能 CpuSysRegs.PCLKCR2.bit.EPWM2ENCLK = 1; // EPWM2时钟使能 CpuSysRegs.PCLKCR2.bit.EPWM3ENCLK = 1; // EPWM3时钟使能 // 配置PWM模块 EPwm1Regs.TBPRD = PWM_PERIOD; // PWM周期 EPwm1Regs.TBCTL.bit.CTRMODE = 0; // 计数器停止 EPwm1Regs.TBCTL.bit.PHSEN = 0; // 禁止相位补偿 EPwm1Regs.TBCTL.bit.SYNCOSEL = 0;// 禁止同步输出 EPwm1Regs.TBCTL.bit.HSPCLKDIV = 0;// 高速时钟分频 EPwm1Regs.TBCTL.bit.CLKDIV = 0; // 时钟分频 EPwm1Regs.CMPA.bit.CMPA = 0; // 初始占空比 EPwm2Regs.TBPRD = PWM_PERIOD; // PWM周期 EPwm2Regs.TBCTL.bit.CTRMODE = 0; // 计数器停止 EPwm2Regs.TBCTL.bit.PHSEN = 0; // 禁止相位补偿 EPwm2Regs.TBCTL.bit.SYNCOSEL = 0;// 禁止同步输出 EPwm2Regs.TBCTL.bit.HSPCLKDIV = 0;// 高速时钟分频 EPwm2Regs.TBCTL.bit.CLKDIV = 0; // 时钟分频 EPwm2Regs.CMPA.bit.CMPA = 0; // 初始占空比 EPwm3Regs.TBPRD = PWM_PERIOD; // PWM周期 EPwm3Regs.TBCTL.bit.CTRMODE = 0; // 计数器停止 EPwm3Regs.TBCTL.bit.PHSEN = 0; // 禁止相位补偿 EPwm3Regs.TBCTL.bit.SYNCOSEL = 0;// 禁止同步输出 EPwm3Regs.TBCTL.bit.HSPCLKDIV = 0;// 高速时钟分频 EPwm3Regs.TBCTL.bit.CLKDIV = 0; // 时钟分频 EPwm3Regs.CMPA.bit.CMPA = 0; // 初始占空比 // 配置PWM计数器 EPwm1Regs.TBCTL.bit.CTRMODE = 0x00; // 计数器停止 EPwm1Regs.TBCTL.bit.SYNCOSEL = 0x0; // 禁止同步输出 EPwm1Regs.TBCTL.bit.PHSEN = 0x0; // 禁止相位补偿 EPwm1Regs.TBCTL.bit.HSPCLKDIV = 0x0; // 高速时钟分频 EPwm1Regs.TBCTL.bit.CLKDIV = 0x0; // 时钟分频 EPwm1Regs.TBCTL.bit.FREE_SOFT = 0x3; // 使能停止后自动清零 EPwm2Regs.TBCTL.bit.CTRMODE = 0x00; // 计数器停止 EPwm2Regs.TBCTL.bit.SYNCOSEL = 0x0; // 禁止同步输出 EPwm2Regs.TBCTL.bit.PHSEN = 0x0; // 禁止相位补偿 EPwm2Regs.TBCTL.bit.HSPCLKDIV = 0x0; // 高速时钟分频 EPwm2Regs.TBCTL.bit.CLKDIV = 0x0; // 时钟分频 EPwm2Regs.TBCTL.bit.FREE_SOFT = 0x3; // 使能停止后自动清零 EPwm3Regs.TBCTL.bit.CTRMODE = 0x00; // 计数器停止 EPwm3Regs.TBCTL.bit.SYNCOSEL = 0x0; // 禁止同步输出 EPwm3Regs.TBCTL.bit.PHSEN = 0x0; // 禁止相位补偿 EPwm3Regs.TBCTL.bit.HSPCLKDIV = 0x0; // 高速时钟分频 EPwm3Regs.TBCTL.bit.CLKDIV = 0x0; // 时钟分频 EPwm3Regs.TBCTL.bit.FREE_SOFT = 0x3; // 使能停止后自动清零 // 配置PWM比较器 EPwm1Regs.CMPCTL.bit.SHDWAMODE = 0x3; // 立即更新占空比 EPwm1Regs.CMPCTL.bit.LOADAMODE = 0x0; // 立即更新占空比 EPwm1Regs.CMPCTL.bit.SHDWBMODE = 0x3; // 立即更新占空比 EPwm1Regs.CMPCTL.bit.LOADBMODE = 0x0; // 立即更新占空比 EPwm1Regs.AQCTLA.bit.CAU = 0x2; // 当PWM计数器计数到CMPA时,设置PWM输出为高电平 EPwm1Regs.AQCTLA.bit.CAD = 0x1; // 当PWM计数器计数到CMPA时,设置PWM输出为低电平 EPwm2Regs.CMPCTL.bit.SHDWAMODE = 0x3; // 立即更新占空比 EPwm2Regs.CMPCTL.bit.LOADAMODE = 0x0; // 立即更新占空比 EPwm2Regs.CMPCTL.bit.SHDWBMODE = 0x3; // 立即更新占空比 EPwm2Regs.CMPCTL.bit.LOADBMODE = 0x0; // 立即更新占空比 EPwm2Regs.AQCTLA.bit.CAU = 0x2; // 当PWM计数器计数到CMPA时,设置PWM输出为高电平 EPwm2Regs.AQCTLA.bit.CAD = 0x1; // 当PWM计数器计数到CMPA时,设置PWM输出为低电平 EPwm3Regs.CMPCTL.bit.SHDWAMODE = 0x3; // 立即更新占空比 EPwm3Regs.CMPCTL.bit.LOADAMODE = 0x0; // 立即更新占空比 EPwm3Regs.CMPCTL.bit.SHDWBMODE = 0x3; // 立即更新占空比 EPwm3Regs.CMPCTL.bit.LOADBMODE = 0x0; // 立即更新占空比 EPwm3Regs.AQCTLA.bit.CAU = 0x2; // 当PWM计数器计数到CMPA时,设置PWM输出为高电平 EPwm3Regs.AQCTLA.bit.CAD = 0x1; // 当PWM计数器计数到CMPA时,设置PWM输出为低电平 EDIS; } ``` 这个代码实现了三个LED流水灯,每个LED的占空比不同,通过三个PWM信号控制。需要注意的是,这个代码中使用了DSP的库函数和寄存器宏定义,如果你使用的是不同型号或者不同品牌的DSP,可能需要对代码进行修改。

相关推荐

最新推荐

recommend-type

孔雀石DSP中文说明书-未完.docx

5.1主屏幕指示灯10 5.2常规菜单12 5.3 HARD菜单13 5.4时钟菜单17 5.5 LCD菜单18 5.6音频20菜单 6基本功能及其使用22 6.1反向编码器22 6.2电源电压监控功能22 6.3选择天线输入类型22 6.4打开或关闭集成的UHF 22 6.5...
recommend-type

dsp6713中断设置完整说明教程.doc

在global.h文件中,我们需要定义定时器的寄存器别名。在main.c文件中,我们需要编写主函数,以便实现定时器中断的处理。 五、中断服务函数设计 在实现中断服务函数时,我们需要根据不同的中断源进行不同的设计。...
recommend-type

DSP编程技巧之:详解cmd文件

cmd文件在DSP编程中的应用和详解 cmd文件是编译完成之后链接各个目标文件时,用来指示各个数据、符号等是如何划分到各个段,以及每个段所使用的存储空间的。在DSP编程中,cmd文件扮演着非常重要的角色,它指导...
recommend-type

DSP程序串口烧写操作手册.docx

根据单位项目,为了实现产品在现场不开盖进行更新程序而作的设计,主芯片是DSP2812,其他可以类似参考,已经证明可以正常使用。
recommend-type

用DSP实现高功率因数PWM整流器的控制

PWM整流器是一种高功率...采用了电流追踪型控制方式对PWM整流器进行控制,并且设计了以高性能的DSP芯片TMS320F240为核心的全数字控制系统。实验证明,该控制系统具有控制灵活,精度高,动态响应好,所受干扰小等优点。
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。