HAL_TIM_OC_Start_DMA
时间: 2024-08-16 13:03:15 浏览: 95
HAL_TIM_OC_Start_DMA是STM32Cube库中的函数,用于在定时器(Timer)的事件通道(Output Compare)模式下启动DMA传输。在这个功能中,"HAL"代表High-Level Abstraction Layer,即高级别硬件抽象层,它是ST提供的软件框架的一部分,简化了对硬件设备的操作。
`TIM_OC_Start_DMA`函数主要用于周期性地从定时器的OC(Output Compare)通道触发DMA数据传输,常用于处理大量的数据,比如ADC采样、GPIO信号等。它需要传入几个参数,包括定时器句柄 TIM_HandleTypeDef* htim,以及DMA请求参数 DMA_HandleTypeDef* hdma_timxoc,表示从哪个定时器OC通道开始传输数据,以及指向要传输的数据缓冲区的信息。
简单来说,这个函数的作用流程大致如下:
1. 配置定时器OC通道的工作模式和参数。
2. 启动指定的DMA通道,将定时器产生的事件映射到DMA传输过程。
3. 开始DMA传输,一旦定时器到达预设的时间点或比较值,就会通过DMA将数据从内部寄存器传输到外部内存或另一个外设。
相关问题
用HAL库实现TIM1_CH4触发ADC采样
以下是使用HAL库实现TIM1_CH4触发ADC采样的示例代码:
```c
#include "stm32f4xx.h"
#include "stm32f4xx_hal.h"
#define ADC_CHANNELS 1
#define ADC_RESOLUTION 12
ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;
TIM_HandleTypeDef htim1;
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_ADC1_Init(void);
static void MX_TIM1_Init(void);
int main(void)
{
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_DMA_Init();
MX_ADC1_Init();
MX_TIM1_Init();
HAL_ADC_Start_DMA(&hadc1, (uint32_t *)adc_values, ADC_CHANNELS);
HAL_TIM_Base_Start(&htim1);
HAL_TIM_OC_Start(&htim1, TIM_CHANNEL_4);
while (1)
{
}
}
void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim)
{
if (htim->Instance == TIM1 && htim->Channel == HAL_TIM_ACTIVE_CHANNEL_4)
{
HAL_ADC_Start_DMA(&hadc1, (uint32_t *)adc_values, ADC_CHANNELS);
}
}
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 16;
RCC_OscInitStruct.PLL.PLLN = 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;
RCC_OscInitStruct.PLL.PLLQ = 7;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1
|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
{
Error_Handler();
}
}
static void MX_ADC1_Init(void)
{
ADC_ChannelConfTypeDef sConfig = {0};
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
hadc1.Init.Resolution = ADC_RESOLUTION;
hadc1.Init.ScanConvMode = DISABLE;
hadc1.Init.ContinuousConvMode = ENABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;
hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T1_CC4;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = ADC_CHANNELS;
hadc1.Init.DMAContinuousRequests = ENABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
sConfig.Channel = ADC_CHANNEL_0;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
}
static void MX_DMA_Init(void)
{
__HAL_RCC_DMA2_CLK_ENABLE();
hdma_adc1.Instance = DMA2_Stream0;
hdma_adc1.Init.Channel = DMA_CHANNEL_0;
hdma_adc1.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma_adc1.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_adc1.Init.MemInc = DMA_MINC_ENABLE;
hdma_adc1.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
hdma_adc1.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
hdma_adc1.Init.Mode = DMA_CIRCULAR;
hdma_adc1.Init.Priority = DMA_PRIORITY_HIGH;
hdma_adc1.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
if (HAL_DMA_Init(&hdma_adc1) != HAL_OK)
{
Error_Handler();
}
__HAL_LINKDMA(&hadc1, DMA_Handle, hdma_adc1);
}
static void MX_TIM1_Init(void)
{
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
htim1.Instance = TIM1;
htim1.Init.Prescaler = 0;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
htim1.Init.Period = 500;
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_OC_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 250;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_4) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_OC4REF;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_ENABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
}
```
在这个示例代码中,使用TIM1_CH4触发ADC采样。TIM1_CH4被配置为PWM模式,当输出脉冲完成时,触发ADC采样。ADC使用单次转换模式,转换完成后通过DMA传输到内存。在main函数中,启动ADC和定时器,并通过HAL_TIM_PWM_PulseFinishedCallback回调函数触发ADC采样。
注意:在使用TIM1_CH4触发ADC采样时,需要将ADC的外部触发源设置为TIM1_CC4。此外,需要确保TIM1_CH4输出脉冲的占空比足够小,以确保ADC转换完成后DMA传输到内存。
stm32f4 hal库 pwm dma输出方波
STM32F4系列微控制器的HAL库提供了用于PWM和DMA输出方波的函数和接口。
首先,我们需要配置GPIO引脚用于PWM输出。选择合适的引脚并将其配置为替代功能模式。然后,我们可以使用HAL库函数 `HAL_TIM_PWM_Init()` 来进行PWM定时器的初始化,设置周期和占空比。
接下来,我们需要配置DMA以实现连续的方波输出。使用 `HAL_DMA_Init()` 函数来初始化DMA控制器,并设置传输方向和数据宽度。然后,使用 `HAL_DMA_Start()` 函数启动DMA传输。
在方波输出的主循环中,我们可以使用 `HAL_TIM_PWM_Start()` 函数来启动PWM输出。通过更改占空比的值,我们可以实现方波的高电平和低电平持续时间的控制。
最后,我们需要在代码中实现一个循环,以便无限循环发送DMA传输以保持方波的连续输出。
以下是一个简单的示例代码:
'''
#include "stm32f4xx_hal.h"
#define PWM_TIM TIM1
#define PWM_CHANNEL TIM_CHANNEL_1
#define PWM_FREQ 100 // 指定PWM周期
#define DMA_STREAM DMA2_Stream0
#define DMA_CHANNEL DMA_CHANNEL_5
#define BUFFER_SIZE 2
uint16_t dmaBuffer[BUFFER_SIZE] = {0};
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_TIM_Init(void);
int main(void) {
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_DMA_Init();
MX_TIM_Init();
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1);
while (1) {
HAL_DMA_Start(&hdma_tim1_ch1, (uint32_t)&dmaBuffer, (uint32_t)&PWM_TIM->CCR1, BUFFER_SIZE);
HAL_Delay(1000);
}
}
void SystemClock_Config(void) {
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
__PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
HAL_RCC_OscConfig(&RCC_OscInitStruct);
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_HCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5);
__SYSCFG_CLK_ENABLE();
}
static void MX_GPIO_Init(void) {
GPIO_InitTypeDef GPIO_InitStruct = {0};
__GPIOA_CLK_ENABLE();
GPIO_InitStruct.Pin = GPIO_PIN_8;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF1_TIM1;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
void MX_DMA_Init(void) {
__HAL_RCC_DMA2_CLK_ENABLE();
HAL_NVIC_SetPriority(DMA2_Stream0_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn);
}
void MX_TIM_Init(void) {
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
htim1.Instance = TIM1;
htim1.Init.Prescaler = 0;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
htim1.Init.Period = (HAL_RCC_GetHCLKFreq() / (PWM_FREQ - 1));
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
HAL_TIM_PWM_Init(&htim1);
sMasterConfig.MasterOutputTrigger = TIM_TRGO_OC1REF;
sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_ENABLE;
HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig);
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = ((HAL_RCC_GetHCLKFreq() / (PWM_FREQ - 1)) / 2);
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1);
__HAL_TIM_ENABLE_DMA(&htim1, TIM_DMA_CC1);
}
void DMA2_Stream0_IRQHandler(void) {
HAL_DMA_IRQHandler(&hdma_tim1_ch1);
}
'''
这是一个简单的代码示例,用于输出具有1秒周期的方波。实际应用中,可以根据需要调整周期和占空比的值以实现不同的方波输出。