def timeChangeintoshixi(time): #150902 第0个时间段0~15min time=int(time/100)#1509 time=int(time/100)*4+int((time%100)/15) return time*15 for i in range(df.shape[0]): df.iloc[i, 1] = timeChangeintoshixi(df.iloc[i, 1])对于以上代码,如何改造成一个多线程的代码,从而提高for循环速度
时间: 2024-01-22 21:17:18 浏览: 61
以下是将代码改造为多线程的示例:
```python
import concurrent.futures
def timeChangeintoshixi(time):
time=int(time/100)
time=int(time/100)*4+int((time%100)/15)
return time*15
def process_row(row):
row[1] = timeChangeintoshixi(row[1])
return row
# 使用多线程处理数据
with concurrent.futures.ThreadPoolExecutor() as executor:
results = executor.map(process_row, df.values)
# 将处理后的结果转换为 DataFrame
df = pd.DataFrame(results, columns=df.columns)
```
使用 `ThreadPoolExecutor` 可以同时处理多个数据行,从而提高处理速度。在上面的示例中,我们定义了一个 `process_row` 函数来处理每一行数据,然后使用 `executor.map()` 方法来并发地处理所有数据行。最后,将处理后的结果转换为 DataFrame。
相关问题
def timeChangeintoshixi(time): #150902 第0个时间段0~15min time=int(time/100)#1509 time=int(time/100)4+int((time%100)/15) return time15 for i in range(df.shape[0]): df.iloc[i, 1] = timeChangeintoshixi(df.iloc[i, 1])对于以上代码,如何改造成一个多进程的代码,从而提高for循环速度
可以使用Python的`multiprocessing`模块来实现多进程并发执行。具体实现步骤如下:
1. 导入`multiprocessing`模块,创建一个进程池对象。
2. 将数据分成若干块,每个进程处理一块数据。
3. 定义一个函数,用于处理一块数据。
4. 使用`map()`方法将数据块传递给进程池,让多个进程并发执行处理函数。
5. 收集处理结果,合并为最终的结果。
代码示例:
```
import multiprocessing
# 定义处理函数
def process_block(data):
result = []
for i in range(data.shape[0]):
time = data.iloc[i, 1]
time = time // 100
time = time * 4 + (time % 100) // 15 * 15
result.append(time)
return result
if __name__ == '__main__':
# 创建进程池
pool = multiprocessing.Pool()
# 将数据分成若干块
chunk_size = 1000
chunks = [df[i:i+chunk_size] for i in range(0, df.shape[0], chunk_size)]
# 并发执行处理函数
results = pool.map(process_block, chunks)
# 合并结果
new_data = []
for result in results:
new_data.extend(result)
# 更新数据
df.iloc[:, 1] = new_data
```
for file in files: condent.append(pd.read_csv(file,sep=',')) print(file) df=pd.concat(condent,axis=0) print('ok') df.columns=['ID','date','time','chepai','jindu','weidu','v','passger'] df.drop(columns='ID',inplace=True)for i in range(df.shape[0]): df.iloc[i, 1] = timeChangeintoshixi(df.iloc[i, 1])def timeChangeintoshixi(time): #150902 第0个时间段0~15min time=int(time/100)#1509 time=int(time/100)*4+int((time%100)/15) return time*15将以上代码修改成多线程多进程模式,提高for循环速率
以下是使用多线程和多进程的代码示例:
使用多线程:
```python
import pandas as pd
import glob
import concurrent.futures
def read_csv(file):
return pd.read_csv(file, sep=',')
def main():
files = glob.glob('*.csv')
content = []
with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor:
futures = [executor.submit(read_csv, file) for file in files]
for future in concurrent.futures.as_completed(futures):
content.append(future.result())
df = pd.concat(content, axis=0)
df.columns = ['ID', 'date', 'time', 'chepai', 'jindu', 'weidu', 'v', 'passger']
df.drop(columns='ID', inplace=True)
for i in range(df.shape[0]):
df.iloc[i, 1] = timeChangeintoshixi(df.iloc[i, 1])
print('ok')
def timeChangeintoshixi(time):
time = int(time / 100)
time = int(time / 100) * 4 + int((time % 100) / 15)
return time * 15
if __name__ == '__main__':
main()
```
使用多进程:
```python
import pandas as pd
import glob
import concurrent.futures
def read_csv(file):
return pd.read_csv(file, sep=',')
def main():
files = glob.glob('*.csv')
content = []
with concurrent.futures.ProcessPoolExecutor(max_workers=4) as executor:
futures = [executor.submit(read_csv, file) for file in files]
for future in concurrent.futures.as_completed(futures):
content.append(future.result())
df = pd.concat(content, axis=0)
df.columns = ['ID', 'date', 'time', 'chepai', 'jindu', 'weidu', 'v', 'passger']
df.drop(columns='ID', inplace=True)
for i in range(df.shape[0]):
df.iloc[i, 1] = timeChangeintoshixi(df.iloc[i, 1])
print('ok')
def timeChangeintoshixi(time):
time = int(time / 100)
time = int(time / 100) * 4 + int((time % 100) / 15)
return time * 15
if __name__ == '__main__':
main()
```
注意:使用多进程时,需要在 `if __name__ == '__main__':` 条件下调用 `main()` 函数。
阅读全文
相关推荐

















